历年高考真题考点归纳2011年第九章解析几何第一节直线和圆填空题:1.(2011年高考重庆卷理科15)设圆位于抛物线与直线所组成的封闭区域(包含边界)内,则圆的半径能取到的最大值为解析:61。为使圆的半径取到最大值,显然圆心应该在x轴上且与直线相切,设圆的半径为,则圆的方程为2223xryr,将其与联立得:222960xrxr,令2224960rr,并由,得:61r解答题:2.(2011年高考广东卷理科19)设圆C与两圆中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程.(2)已知点且P为L上动点,求的最大值及此时点P的坐标.【解析】(1)解:设C的圆心的坐标为,由题设条件知化简得L的方程为(2)解:过M,F的直线方程为,将其代入L的方程得解得因T1在线段MF外,T2在线段MF内,故,若P不在直线MF上,在中有故只在T1点取得最大值2。3.(2011年高考上海卷理科23)(18分)已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作。(1)求点到线段的距离;(2)设是长为2的线段,求点集所表示图形的面积;(3)写出到两条线段距离相等的点的集合,其中,是下列三组点中的一组。对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。①。②。③。解:⑴设是线段上一点,则,当时,。⑵设线段的端点分别为,以直线为轴,的中点为原点建立直角坐标系,则,点集由如下曲线围成,其面积为。⑶①选择,②选择。1-1-11yxOBA③选择。DB=CA122.5yx-2xy-113ABCDOODCBA31-1yx