【金版学案】2015-2016学年高中数学1.1.3正、余弦定理综合练习新人教A版必修5►基础梳理1.(1)三角形三个角均为____角的三角形叫锐角三角形.(2)三角形ABC中,cosA·cosB·cosC>0,则该三角形必为__________三角形.2.(1)三角形三个角中最大的角为____角的三角形叫直角三角形;三角形三个角中最大的角为____角的三角形叫钝角三角形.(2)在△ABC中,已知sinA∶sinB∶sinC=2∶3∶4,则该三角形必为__________三角形.3.在△ABC中,若c2>a2+b2,则△ABC必是______三角形.4.有____条边相等或____个内角相等的三角形为等腰三角形;____条边均相等或______个内角均相等的三角形叫等边三角形.5.S△ABC=absinC=acsinB=bcsinA.已知a=2,b=3,C=30°,则三角形ABC的面积S△ABC=________.基础梳理1.(1)锐(2)锐角2.(1)直钝(2)解析:由正弦定理知:a∶b∶c=sinA∶sinB∶sinC=2∶3∶4,只需考察角C的大小即可,设a=2k,b=3k,c=4k.由余弦定理可得:cosC=-<0,所以C为钝角,该三角形必为钝角三角形.答案:钝角3.解析:∵cosC=<0,∴∠C为钝角.答案:钝角4.两两三三5.►自测自评1.在△ABC中,由已知条件解三角形,其中有两解的是()A.b=20,A=45°,C=80°B.a=30,c=28,B=60°C.a=14,b=16,A=45°D.a=12,c=15,A=120°2.在钝角△ABC中,已知a=1,b=2,则最大边c的取值范围是()A.1<c<3B.2<c<3C.<c<3D.2<c<33.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为()A.B.C.D.自测自评11.C2.C3.解析:设三角形的底边长为a,则周长为5a.∴等腰三角形腰的长为2a,由余弦定理可知cosa==.答案:D►基础达标1.在△ABC中,若=,则角B的值为()A.30°B.45°C.60°D.90°1.解析:由=及正弦定理得:=,∴=1,tanB=1.又∵0°
b,所以∠B=.答案:A8.(2014·江苏卷)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是________.8.解析:由已知sinA+sinB=2sinC及正弦定理可得a+b=2c,cosC===≥=,当且仅当3a2=2b2即=时等号成立.答案:9.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC-ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.9.解析:(1)由c=asinC-ccosA及正弦定理得sinAsinC-cosAsinC=sinC.由于sinC≠0,所以sin=.又0