1-1-1两个计数原理及其简单应用1.某小组有8名男生,4名女生,要从中选取一名当组长,不同的选法有()A.32种B.9种C.12种D.20种[解析]由分类加法计数原理知,不同的选法有N=8+4=12(种).[答案]C2.现有A,B两种类型的车床各一台,甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从这三名工人中选两名分别去操作以上车床,不同的选派方法有()A.6种B.5种C.4种D.3种[解析]若选甲、乙两人,包括甲操作A车床,乙操作B车床,或甲操作B车床,乙操作A车床,共有2种选派方法,若选甲、丙二人,则只有甲操作B车床,丙操作A车床这1种选派方法.若选乙、丙二人,则只有乙操作B车床,丙操作A车床这1种选派方法,故共有2+1+1=4(种)不同的选派方法.[答案]C3.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在平面直角坐标系中,第一、第二象限内不同点的个数为()A.18B.16C.14D.10[解析]此问题可分为两类:①以集合M中的元素作为横坐标,集合N中的元素作为纵坐标,在集合M中任取一个元素的方法有3种,要使所取的点在第一、第二象限内,则在集合N中只能取5,6两个元素中的一个,方法有2种,根据分步乘法计数原理,有3×2=6(个);②以集合N中的元素作为横坐标,集合M中的元素作为纵坐标,在集合N中任取一个元素的方法有4种,要使所取的点在第一、第二象限内,则在集合M中只能取1,3两个元素中的一个,方法有2种,根据分步乘法计数原理,有4×2=8(个).综合①②,由分类加法计数原理知,共有6+8=14(个),故选C.[答案]C4.从甲地到乙地有2种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地的不同走法种数共有()A.2+4+3B.2×4+3C.2×3+4D.2×4×3[解析]分两类,一是从甲地经乙地到丙地,有2×4种,二是直接从甲地到丙地有3种,所以从甲地到丙地的不同走法种数共有2×4+3.[答案]B12