山东省东营市2017年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中,最大的数是()A.3B.3C.0D.π【答案】D【解析】试题分析:根据在数轴上表示的两个实数,右边的总比左边的大可得0<3<3<π,故选:D.考点:实数的比较大小2.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|3﹣2|=2﹣3C.8﹣3=5D.﹣(﹣a+1)=a+1【答案】B【解析】考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号3.若|x2﹣4x+4|与23xy互为相反数,则x+y的值为()A.3B.4C.6D.9【答案】A【解析】试题分析:根据相反数的定义得到|x2﹣4x+4|+23xy=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x=2,再求出y=1,最后计算它们的和x+y=3.故选A.考点:解一元二次方程﹣配方法4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【答案】C【解析】又随时间t的增长而增长,故选:C.考点:函数图象5.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【答案】D【解析】试题分析:先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3=180°﹣∠APQ=165°,再根据对顶角相等即可得出∠1=165°,故选:D.考点:平行线的性质6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.47B.37C.27D.17【答案】A【解析】考点:概率7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5B.6C.8D.12【答案】B【解析】试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=6.故选B.考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°【答案】C【解析】故选:C.考点:有关扇形和圆锥的相关计算9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=3,则△ABC移动的距离是()A.32B.33C.62D.3﹣62【答案】D【解析】试题分析:移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:2,推出EC=62,利用线段的差求BE=BC﹣EC=3﹣62.故选:D.考点:1、相似三角形的判定和性质,2、平移的性质10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【答案】C【解析】 ∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误; ∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DPPHPCDP,∴DP2=PHPC,故④正确;故选C.考点:1、正方形的性质,2、等边三角形的性质,3、相似三角形的判定和性质二、填空题(本大题共8小题,共28分)11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.【答案】1.2×108【解析】故答案为:1.2×108.考点:科学记数法12.分解因式:﹣2x2y+16xy﹣32y=.【答案】﹣2y(x﹣4)2【解析】试题分析:根据提取公因式以及完全平方公式即可求出:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2考点:因式分解13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比...