一维抛物线偏微分方程数值解法(2)一维抛物线偏微分方程数值解法(2)上一篇文章请参看一维抛物线偏微分方程数值解法(1)解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法)Ut-Uxx=0,00)U(x,0)=e^x,0<=x<=1,U(0,t)=e^t,U(1,t)=e^(1+t),0>title('误差曲面');plot(t,e)误差较之前的欧拉向前差分格式增长了两倍[upext]=pwxywxh(0.1,0.05,10,20);plot(t,e)[upext]=pwxywxh(0.01,0.05,100,20);plot(t,e)[upext]=pwxywxh(0.01,0.01,100,100);plot(t,e)[upext]=pwxywxh(0.01,0.005,100,200);plot(x,e)[upext]=pwxywxh(0.01,0.005,100,200);plot(t,e)[upext]=pwxywxh(0.005,0.005,200,200);plot(x,e)X=1时,出现了误差???不是边界条件吗?不能理解这方法还是比前一种方法误差大呀不过可以随便改变时间、空间步长