电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

专题直线与圆锥曲线VIP免费

专题直线与圆锥曲线_第1页
1/12
专题直线与圆锥曲线_第2页
2/12
专题直线与圆锥曲线_第3页
3/12
1/12专题五直线与圆锥曲线1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断.设直线l的方程为Ax+By+C=0,圆锥曲线方程f(x,y)=0.由Ax+By+C=0f(x,y)=0,消元如消去y后得ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合).②若a≠0,设Δ=b2-4ac.a.Δ______0时,直线和圆锥曲线相交于不同两点;b.Δ______0时,直线和圆锥曲线相切于一点;c.Δ______0时,直线和圆锥曲线没有公共点.2.直线与圆锥曲线相交时的弦长问题(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=___________或|P1P2|=________________.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式).(3)求经过圆锥曲线的焦点的弦的长度,应用圆锥曲线的定义,转化为两个焦半径之和,往往比用弦长公式简捷.3.圆锥曲线的中点弦问题遇到中点弦问题常用“韦达定理”或“点差法”求解.在椭圆x2a2+y2b2=1中,以P(x0,y0)为中点的弦所在直线的斜率k=-b2x0a2y0;在双曲线x2a2-y2b2=1中,以P(x0,y0)为中点的弦所在直线的斜率k=b2x0a2y0;在抛物线y2=2px(p>0)中,以P(x0,y0)为中点的弦所在直线的斜率k=py0.[难点正本疑点清源]1.直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点.还可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几2/12个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能题型一直线与圆锥曲线的位置关系例1已知定圆A:(x+1)2+y2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.(1)求曲线C的方程;(2)若点P(x0,y0)为曲线C上一点,求证:直线l:3x0x+4y0y-12=0与曲线C有且只有一个交点.探究提高将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线的位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆x22+y2=1有两个不同的交点P和Q.(1)求k的取值范围;(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量OP→+OQ→与AB→垂直?如果存在,求k值;如果不存在,请说明理由.题型二圆锥曲线中的弦长问题例2设点F0,32,动圆P经过点F且和直线y=-32相切,记动圆的圆心P的轨迹为曲线W.(1)求曲线W的方程;(2)过点F作互相垂直的直线l1,l2分别交曲线W于A,B和C,D.求四边形ACBD面积的最小值.探究提高由直线与圆锥曲线的方程联立解方程组是解决这类问题的通法,而相关的最值的讨论求解往往需要建立目标函数,进一步转化为函数法或不等式法来求解.(x1,y1),B(x2,y2)是椭圆y2a2+x2b2=1(a>b>0)上的两点,已知向量m=x1b,y1a3/12n=x2b,y2a,若m·n=0且椭圆的离心率e=32,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若直线AB的斜率存在且直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值;(3)试问:△AOB的面积是否为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

专题直线与圆锥曲线

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部