湖北省襄阳市枣阳市白水高中2014-2015学年高二下学期3月月考数学试卷(理科)一、选择题:1.已知集合A={x|x2﹣2x≤0},B={x|y=log2(x﹣1)},则A∩B=()A.{x|1≤x<2}B.{x|1<x<2}C.{x|1<x≤2}D.{x|1≤x≤2}考点:交集及其运算.专题:集合.分析:利用不等式知识和交集定义求解.解答:解: 集合A={x|x2﹣2x≤0}={x|0≤x≤2},B={x|y=log2(x﹣1)}={x|x﹣1>0}={x|x>1},∴A∩B={x|1<x≤2}.故选:C.点评:本题考查交集的求法,是基础题.解题时要注意不等式知识的合理运用.2.双曲线两条渐近线的夹角为60°,该双曲线的离心率为()A.或2B.或C.或2D.或考点:双曲线的简单性质.分析:由题意得,或分类讨论利用双曲线的性质即可得出.解答:解: 双曲线两条渐近线的夹角为60°,∴或.当时,,∴b2=3a2,又c2=a2+b2,∴c2=4a2,即.同理可得当时,.故选:A.点评:本题考查了双曲线的简单性质,属于基础题.3.在一个投掷硬币的游戏中,把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于()1A.B.C.D.考点:条件概率与独立事件.专题:计算题;概率与统计.分析:本题是一个条件概率,第一次出现正面的概率是,第一次出现正面且第二次也出现正面的概率是×=,代入条件概率的概率公式得到结果.解答:解:由题意知本题是一个条件概率,第一次出现正面的概率是,第一次出现正面且第二次也出现正面的概率是×=,∴P(B|A)==.故选:A.点评:本题考查条件概率,本题解题的关键是看出事件AB同时发生的概率,正确使用条件概率的公式.4.与向量=(1,﹣3,2)平行的一个向量的坐标是()A.(,1,1)B.(﹣1,﹣3,2)C.(﹣,,﹣1)D.(,﹣3,﹣2)考点:向量的数量积判断向量的共线与垂直.专题:空间向量及应用.分析:利用向量共线定理即可判断出.解答:解:对于C中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C.点评:本题考查了向量共线定理的应用,属于基础题.25.已知A(﹣1,﹣2,6),B(1,2,﹣6)O为坐标原点,则向量与的夹角是()A.0B.C.πD.考点:空间向量的夹角与距离求解公式.专题:空间向量及应用.分析:由cos<>==﹣1,能求出向量与的夹角为π.解答:解: A(﹣1,﹣2,6),B(1,2,﹣6)O为坐标原点,∴向量=(﹣1,﹣2,6),=(1,2,﹣6),∴cos<>==﹣1,∴向量与的夹角为π.故选:C.点评:本题考查空间中两向量的夹角的求法,解题时要认真审题,是基础题.6.当0<a<1时,关于x的不等式>1的解集是()A.(2,)B.(,2)C.(﹣∞,2)∪(,+∞)D.(﹣∞,)∪(2,+∞)考点:其他不等式的解法.专题:不等式的解法及应用.分析:要解的不等式即,即•(x﹣2)<0.再根据>2,求得不等式的解集.解答:解:当0<a<1时,关于x的不等式>1即,即•(x﹣2)<0.由于>2,∴2<x<,故选:A.3点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,注意判断>2,属于基础题.7.若ab≠0,则ax﹣y+b=0和bx2+ay2=ab所表示的曲线只可能是图中的()A.B.C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:方程可化为y=ax+b和.由此利用直线和椭圆的性质利用排除法求解.解答:解:方程可化为y=ax+b和.从B,D中的两椭圆看a,b∈(0,+∞),但B中直线有a<0,b<0矛盾,应排除;D中直线有a<0,b>0矛盾,应排除;再看A中双曲线的a<0,b>0,但直线有a>0,b>0,也矛盾,应排除;C中双曲线的a>0,b<0和直线中a,b一致.故选:C.点评:本题考查直线与椭圆的图象的判断,是中档题,解题时要认真审题,注意直线与椭圆的性质的合理运用.8.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹方程是()A.3x﹣4y=0(x>0)B.4x﹣3y=0(0≤x≤3)C.4y﹣3x=0(0≤y≤4)D.3y﹣4x=0(y>0)考点:两点间距离公式的应用.专题:计算题;直线与圆.分析:根据两点的距离公式,算出|AB|=5,可得所求的轨迹为线段AB,求出直线AB的方程即可得到答案.4解答:解: A(0,0...