课时作业(十四)等比数列前n项和的性质与数列求和A组(限时:10分钟)1.等比数列{an}的前n项和为Sn.已知S3=a2+10a1,a5=9,则a1=()A.B.-C.D.-解析:设数列{an}的公比为q,若q=1,则由a5=9,得a1=9,此时S3=27,而a2+10a1=99,不满足题意,因此q≠1.∵q≠1时,S3==a1·q+10a1,∴=q+10,整理得q2=9.∵a5=a1·q4=9,即81a1=9,∴a1=.答案:C2.若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=()A.15B.12C.-12D.-15解析:∵an=(-1)n(3n-2),则a1+a2+…+a10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.数列{an}的通项公式an=,则其前n项和Sn=()A.B.C.D.解析:∵an===2,∴Sn=a1+a2+…+an=2=2=.答案:A4.等比数列{an}共有奇数项,所有奇数项和S奇=255,所得偶数项和S偶=-126,末项是192,则首项a1=()A.1B.2C.3D.4解析:设等比数列{an}共有2k+1(k∈N*)项,则a2k+1=192,S奇=a1+a3+…+a2k-1+a2k+1=(a2+a4+…+a2k)+a2k+1=S偶+a2k+1=-+192=255,解得q=-2,而S奇===255,解得a1=3.答案:C5.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{an}的通项公式;(2)求数列的前n项和.解:(1)设{an}的公差为d,则Sn=na1+d.由已知可得解得a1=1,d=-1.故{an}的通项公式为an=2-n.(2)由(1)知=1=,从而数列的前n项和为=.B组(限时:30分钟)1.设等比数列{an}的前n项和为Sn,若=3,则等于()A.2B.C.D.3解析:∵==1+q3=3,∴q3=2,∴===.答案:B2.设f(n)=2+24+27+210+…+23n+1(n∈N),则f(n)等于()A.(8n-1)B.(8n+1-1)C.(8n+3-1)D.(8n+4-1)解析:f(n)==(8n+1-1).答案:B3.已知等比数列{an}中,公比q=,且a1+a3+a5+…+a99=60,则a1+a2+a3+…+a100=()A.100B.90C.120D.30解析:∵S奇=60,q=,∴S偶=S奇·q=30,∴S100=S奇+S偶=90.答案:B4.在数列{an}中,已知对任意正整数n,有a1+a2+…+an=2n-1,那么a+a+…+a等于()A.(2n-1)2B.(2n-1)2C.4n-1D.(4n-1)解析:由Sn=2n-1,可得an=2n-1,∴a=4n-1,∴a+a+…+a==(4n-1).答案:D5.已知数列{an}满足a1=1,an+1=an+n+2n(n∈N*),则an为()A.+2n-1-1B.+2n-1C.+2n+1-1D.+2n+1-1解析:解法一:当n=1时,a1=1,可以排除A、C、D,∴选B.解法二:∵an+1-an=n+2n,∴an=(an-an+1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+2n-1+(n-2)+2n-2+…+1+21+1=(1+2+…+n)+(2+22+…+2n-1)=+2n-1.答案:B6.在数列{an}中,a1=2,an+1=an+ln,则an等于()A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn解析:∵an+1-an=ln(n+1)-lnn,∴an=(an-an-1)+(an-1-an-2)…+(a2-a1)+a1=lnn-ln1+2=2+lnn.2答案:A7.在等比数列{an}中,a1+a2=2,a3+a4=4,则a5+a6=________.解析:∵a1+a2,a3+a4,a5+a6成等比数列,∴a5+a6=8.答案:88.若数列{an}满足:a1=1,an+1=2an(n∈N+),则a5=________;前8项的和S8=________.(用数字作答)解析:由a1=1,an+1=2an知an=2n-1,故a5=24=16,S8==255.答案:162559.已知数列{an}的前n项和满足log2(Sn+1)=n+1,则an=________.解析:由Sn+1=2n+1得Sn=2n+1-1,∴an=答案:10.已知数列{an}是公差不为0的等差数列,a1=1且a1,a3,a9成等比数列.(1)求数列{an}的通项公式;(2)求数列{2an}的前n项和.解:(1)由题设知公差d≠0,由a1,a3,a9成等比数列得=.解得d=1或d=0(舍去),故{an}的通项an=1+(n-1)×1=n.(2)由(1)知2an=2n,∴Sn=2+22+23+…+2n==2n+1-2.11.已知数列{an}是首项a1=4,公比q≠1的等比数列,Sn是其前n项和,且4a1,a5,-2a3成等差数列.(1)求公比q的值;(2)设An=S1+S2+S3+…+Sn,求An.解:(1)由已知2a5=4a1-2a3,即2a1·q4=4a1-2a1·q2,∵a1≠0,整理得,q4+q2-2=0,解得q2=1,即q=1或q=-1,又∵q≠1,∴q=-1.(2)Sn==2-2(-1)n,∴An=S1+S2+…+Sn=2n-2·=2n+1-(-1)n.12.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an与bn;(2)求++…+.解:(1)设{an}的公差为d,{bn}的公比为q,则d为正数.an=3+(n-1)d,bn=qn-1,依题意有解得或(舍去).故an=3+2(n-1)=2n+1,bn=8n-1.(2)Sn=3+5+…+(2n+1)=n(n+2).3所以++…+=+++…+===-.4