黑龙江省大庆市杜蒙县2016-2017学年高二数学12月月考试题一、选择题(共12小题,每小题5分,满分60分)1.点(1,1)到直线x﹣y+1=0的距离是()A.B.C.D.2.已知直线l的方程为y=x+1,则该直线l的倾斜角为()A.30°B.45°C.60°D.135°3.空间中,两条直线若没有交点,则这两条直线的位置关系是()A.相交B.平行C.异面D.平行或异面4.若直线a与平面α不垂直,那么在平面α内与直线a垂直的直线()A.只有一条B.无数条C.是平面α内的所有直线D.不存在5.下列直线中与直线2x+y+1=0垂直的一条是()A.2x﹣y﹣1=0B.x﹣2y+1=0C.x+2y+1=0D.x+y﹣1=06.直线l在平面直角坐标系中的位置如图,已知l∥x轴,则直线l的方程不可以用下面哪种形式写出()A.点斜式B.斜截式C.截距式D.一般式7.已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1C.2D.8.圆A:x2+y2+4x+2y+1=0与圆B:x2+y2﹣2x﹣6y+1=0的位置关系是()A.相交B.相离C.相切D.内含19.若直线mx+2ny﹣4=0始终平分圆x2+y2﹣4x+2y﹣4=0的周长,则m、n的关系是()A.m﹣n﹣2=0B.m+n﹣2=0C.m+n﹣4=0D.m﹣n+4=010.P是圆(x﹣5)2+(y﹣3)2=9上点,则点P到直线3x+4y﹣2=0的最大距离是()A.2B.5C.8D.911.已知圆C:(x﹣1)2+(y﹣2)2=5,直线l:x﹣y=0,则C关于l的对称圆C′的方程为()A.(x+1)2+(y+2)2=5B.(x﹣2)2+(y﹣1)2=5C.(x﹣2)2+(y+1)2=5D.(x﹣1)2+(y+2)2=512.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成角的余弦值是()A.B.C.D.0二、填空题(本题共4小题,每题5分,共20分.)13.若直线x﹣y=0与直线2x+ay﹣1=0平行,则实数a的值为.14.已知△P1P2P3的三顶点坐标分别为P1(1,2),P2(4,3)和P3(3,﹣1),则这个三角形的最大边边长是,最小边边长是.15.若球O内切于棱长为2的正方体,则球O的表面积为.16.若圆C:x2+y2﹣4x+2y+m=0与y轴交于A,B两点,且∠ACB=90°,则实数m的值为.三、解答题(共6小题,满分70分)17.如图,在平行四边形OABC中,点C(1,3).(1)求OC所在直线的斜率;(2)过点C做CD⊥AB于点D,求CD所在直线的方程.218.已知圆C同时满足下列三个条件:①与y轴相切;②半径为4;③圆心在直线x﹣3y=0上.求圆C的方程.19.如图,已知正四棱锥V﹣ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm.(1)求正四棱锥V﹣ABCD的体积;(2)求直线VD与底面ABCD所成角的正弦值.20.如图,在正方体ABCD﹣A1B1C1D1中,E、F分别为AD,AB的中点.(1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.321.已知直线l在y轴上的截距为﹣2,且垂直于直线x﹣2y﹣1=0.(1)求直线l的方程;(2)设直线l与两坐标轴分别交于A、B两点,△OAB内接于圆C,求圆C的一般方程.22.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|.(1)求实数a、b间满足的等量关系;(2)求线段PQ长的最小值.4一、选择题(共12小题,每小题5分,满分60分)CBDBB,CCCAC,BD二、填空题(本题共4小题,每题5分,共20分.)13.﹣2.14.,.15.4π.16.﹣3.三、解答题(共6小题,满分70分)17.【解答】解:(1) 点O(0,0),点C(1,3),∴OC所在直线的斜率为.(2)在平行四边形OABC中,AB∥OC, CD⊥AB,∴CD⊥OC.∴CD所在直线的斜率为.∴CD所在直线方程为,即x+3y﹣10=0.18.已知圆C同时满足下列三个条件:①与y轴相切;②半径为4;③圆心在直线x﹣3y=0上.求圆C的方程.【解答】解: 圆C同时满足下列三个条件:①与y轴相切;②半径为4;③圆心在直线x﹣3y=0上,设圆的圆心为(3b,b),则|3b|=4,∴b=±,故要求的圆的方程为(x﹣4)2+=16,或(x+4)2+=16.19.如图,已知正四棱锥V﹣ABCD中,AC与BD交于点M,VM是棱锥的高,若AC=6cm,VC=5cm.(1)求正四棱锥V﹣ABCD的体积;(2)求直线VD与底面ABCD所成角的正弦值.5【解答】解:(1) 正四棱锥V﹣ABCD中,ABCD是正方形,∴MC=AC=BD...