【课堂新坐标】2016-2017学年高中数学第一章计数原理1.1两个基本计数原理学业分层测评苏教版选修2-3(建议用时:45分钟)学业达标]一、填空题1.高一年级三好学生中有男生6人,女生4人,从中选一人去领奖,共有________种不同的选法;从中选一名男生,一名女生去领奖,则共有________种不同的选法.【解析】从中选一人去领奖有6+4=10(种)方法.从中选一名男生一名女生去领奖有6×4=24(种)选法.【答案】10242.一名志愿者从沈阳赶赴南京为游客提供导游服务,但需在北京停留.已知从沈阳到北京每天有7个航班,从北京到南京每天有6列火车,该志愿者从沈阳到南京共有________种不同的方法.【导学号:29440001】【解析】根据分步计数原理,此人可选择的行车方式共有6×7=42(种).【答案】423.(2016·徐州高二检测)某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队方法有________种.【解析】先选1男有6种方法,再选1女有5种方法,故共有6×5=30种不同的组队方法.【答案】304.由1,2,3,4可以组________个自然数.(数字可以重复,最多只能是四位数字)【解析】组成的自然数可以分为以下四类:第一类:一位自然数,共有4个.第二类:两位自然数,又可分两步来完成.先取出十位上的数字,再取出个位上的数字,共有4×4=16(个).第三类:三位自然数,又可分三步来完成.每一步都可以从4个不同的数字中任取一个,共有4×4×4=64(个).第四类:四位自然数,又可分四步来完成,每一步都可以从4个不同的数字中任取一个,共有4×4×4×4=256(个).由分类计数原理知,可以组成的不同的自然数为4+16+64+256=340(个).【答案】3405.商店里有适合女学生身材的女上衣3种,裙子3种,裤子2种.若一位女生要买一套服装,则共有________种不同选法.【解析】3×(3+2)=15(种).【答案】156.(2016·无锡高二检测)设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射的个数为________.【解析】建立映射,即对于A中的每一个元素,在B中都有一个元素与之对应,故由分步计数原理得映射有2×2×2=8(个).【答案】87.用4种不同的颜色涂入如图111所示的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂色方法共有______种.AB1CD图111【解析】按A,B,C,D顺序涂色,共有4×3×2×3=72种方法.【答案】728.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.【解析】分三类:若甲在周一,则乙丙有4×3=12种排法;若甲在周二,则乙丙有3×2=6种排法;若甲在周三,则乙丙有2×1=2种排法.所以不同的安排方法共有12+6+2=20种.【答案】20二、解答题9.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?【解】(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得知P可表示平面上的点数是6×6=36(个).(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限的点的个数是3×2=6(个).(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.结合(1)得,不在直线y=x上的点共有36-6=30(个).10.由0,1,2,3这四个数字,可组成多少个?(1)无重复数字的三位数?(2)可以有重复数字的三位数?【解】(1)0不能做百位数字,所以百位数字有3种选择,十位数字有3种选择,个位数字有2种选择,所以无重复数字的三位数共有3×3×2=18(个).(2)百位数字有3种选择,十位数字有4种选择,个位数字也有4种选择.由分步计数原理知,可以有重复数字的三位数共有3×4×4=48(个).能力提升]1.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图...