【金版学案】2015-2016学年高中数学2.2.2等差数列的性质练习新人教A版必修5►基础梳理1.(1)设{an}为等差数列,若已知公差为d,则an-am=__________.由此知,an=am+________.(2)已知{an}为等差数列,已知公差d=3,a2=6,则an=____________.2.(1)设{an}为等差数列,则与首末两项距离相等的两项和等于__________,即______________________.(2)在等差数列{an}中,an=2n-1,则a3+a5=______,a2+a6=______,可知a3+a5______a2+a6.3.(1)设{an}为等差数列,若m+n=p+q,则________________________________________________________________________.(2)设{an}为等差数列,若m+n=2p,则________________________________________________________________________.4.(1)设{an}为等差数列,则对于任意常数b,有{ban}为__________.(2)已知数列{an}为等差数列,且an=3n+2(n∈N*),则数列{3an}的第n项为______.5.(1)等差数列{an}的等间隔项组成的数列为________.(2)已知{an}为等差数列,且其公差为d,则{a2n-1}是__________,其公差为______.6.(1)若{an}为等差数列,{bn}为等差数列,且cn=an+bn,dn=an-bn,则____________________.(2)已知数列{an}与{bn}为等差数列,an=2n-1,bn=3n+2(n∈N*),则an+bn=________,为________,an-bn=________,为等差数列.基础梳理1.(1)(n-m)d(n-m)d(2)3n(n∈N*)2.(1)首末两项的和a1+an=a2+an-1=a3+an-2=…(2)1414=3.(1)am+an=ap+aq(2)am+an=2ap4.(1)等差数列(2)9n+6(n∈N*)5.(1)等差数列(2)等差数列2d6.(1){cn}与{dn}也为等差数列(2)5n+1等差数列-n-3►自测自评1.在等差数列{an}中,a1+a9=10,则a5的值为()A.5B.6C.8D.102.若{an}是等差数列,则下列数列中仍为等差数列的有()①{an+an+1};②{a};③{an+1-an};④{2an};⑤{2an+n}.A.1个B.2个C.3个D.4个3.下列命题中,为真命题的是()A.若{an}是等差数列,则{|an|}也是等差数列B.若{|an|}是等差数列,则{an}也是等差数列1C.若存在自然数n使2an+1=an+an+2,则{an}是等差数列D.若{an}是等差数列,则对任意n∈N*都有2an+1=an+an+2自测自评1.解析:由角标性质得a1+a9=2a5,所以a5=5.答案:A2.D3.D►基础达标1.如果数列{an}是等差数列,则下列式子一定成立的有()A.a1+a8<a4+a5B.a1+a8=a4+a5C.a1+a8>a4+a5D.a1a8=a4a51.解析:由等差数列的性质有a1+a8=a4+a5,故选B.答案:B2.设{an}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120B.105C.90D.752.解析:设等差数列{an}的公差为d(d>0),a1+a2+a3=15,a1a2a3=80,则a2=5,a1a3=16,(5-d)(5+d)=16,∴d=3,a12=a2+10d=35,a11+a12+a13=3a12=105.故选B.答案:B3.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5B.4C.3D.23.解析:设a1+a3+a5+a7+a9=15,a2+a4+a6+a8+a10=30,两式相减得5d=15,∴d=3,故选C.答案:C4.在等差数列-5,-3,-2,-,…的每相邻两项插入一个数,使之成为一个新的等差数列,则新的数列的通项为()A.an=n-B.an=-5-(n-1)C.an=-5-(n-1)D.an=n2-3n4.解析:新数列的公差d==,∴an=-5+(n-1)·=n-.故选A.答案:A5.设数列{an},{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项的值为()A.0B.37C.100D.-375.解析:设cn=an+bn,则c1=a1+b1=25+75=100,c2=a2+b2=100,故d=c2-c1=0,故cn=100(n∈N*),从而c37=100.答案:C6.(2013·广东卷)在等差数列{an}中,已知a3+a8=10,则3a5+a7=________.26.解析: 3a5+a7=2a5+2a6=2(a5+a6),又 a3+a8=a5+a6=10,∴3a5+a7=20.答案:20►巩固提高7.(2013·辽宁卷)下面是关于公差d>0的等差数列(an)的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列.其中的真命题为()A.p1,p2B.p3,p4C.p2...