第1页共16页21.3实际问题与一元二次方程面积、围墙、动点问题一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。(1)设:设未知数,有直接和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。二、典型题型例题1、如图,某小区在宽20m,长32m的矩形场地上修同样宽的三条人行道(阴影部分),余下的部分种花草.若种植花草的面积为589m2,求道路的宽度.【分析】设道路宽为x米,先将道路进行平移,然后根据矩形的面积公式列方程求解即可.【解答】解:设道路宽为x米,根据题意,得(20﹣x)(32﹣x)=589.整理得:x2﹣52x+51=0.解得x1=51(不合题意,舍去),x2=1.答:道路宽为1米.【点评】此题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.本题中按原图进行计算比较复杂时,可根据图形的性质适当的进行转换化简,然后根据题意列出方程求解.例题2、如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.第2页共16页【分析】可设矩形草坪BC边的长为x米,则AB的长是米,根据长方形的面积公式列出一元二次方程求解.【解答】解:设BC边的长为x米,则AB=CD=米,根据题意得:?x=120,解得:x1=12,x2=20, 20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.【点评】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程.例题3、如图,在长方形ABCD中,AB=10厘米,BC=6厘米,点P沿AB边从点A开始向点B以3厘米/秒的速度移动;点Q沿DA边从点D开始向点A以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,用含t的代数式表示AP=,AQ=,并求出当t为何值时线段AP=AQ.(2)如图2,在不考虑点P的情况下,连接QB,问:当t为何值时△QAB的面积等于长方形面积的.【分析】(1)由题意表示出:AP=3t,DQ=2t,则AQ=6﹣2t,并根据AP=AQ列等式解出t的值;(2)根据已知列等式求解.第3页共16页【解答】解:(1)由题意得:AP=3t,DQ=2t,则AQ=6﹣2t,当AP=AQ时,3t=6﹣2t,t=1.2;故答案为:3t,6﹣2t;(2) ,∴,得:t=1【点评】本题考查了矩形的性质、三角形面积和矩形面积以及动点运动问题,此类题首先要明确动点运动的路线、速度、时间,根据路程=时间×速度表示行动的路程,再利用已知条件列等式解决问题.三、综合练习一.选择题(共22小题)1.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.(10﹣2x)(6﹣2x)=32C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=322.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5D.(7+2x)(5+2x)=3×7×53.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下第4页共16页的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为x,根据题意,所列方程正确的是()A.(20﹣x)(32﹣x)=540B.(20﹣x)(32﹣x)=100C.(20+x)(32﹣x)=540D.(20+x)(32﹣x)=1004.同一根细铁丝可以折成边长为10cm的等边三角形,也可以折成面积为50cm2的长方形.设所折成的长方形的一边长为x,则可列方程为()A.x(10﹣x)=50B.x(30﹣x)=50C.x(15﹣x)=50D.x(30﹣2x)=505.用...