安徽省安庆一中2018-2019学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12小题,每小题5分,共60分.1.不等式的解集为()A.B.C.D.【答案】D【解析】【分析】运用一元二次不等式的解法来求解,可以先因式分解,结合图像来求解集.【详解】不等式可以因式分解为,又因为其图像抛物线开口向上,要求大于或等于零的解集,则取两根开外,故不等式的解集为,故选【点睛】本题考查了一元二次不等式的解法,较为简单.2.空间中可以确定一个平面的条件是()A.三个点B.四个点C.三角形D.四边形【答案】C【解析】【分析】根据公理2即可得出答案。【详解】在A中,不共线的三个点能确定一个平面,共线的三个点不能确定一个平面,故A错误;在B中,不共线的四个点最多能确定四个平面,故B错误;在C中,由于三角形的三个顶点不共线,因此三角形能确定一个平面,故C正确;在D中,四边形有空间四边形和平面四边形,空间四边形不能确定一个平面,故D错误.【点睛】本题对公理2进行了考查,确定一个平面关键是对过不在一条直线上的三点,有且只有一个平面的理解。3.若直线与平行,则实数的值为()A.或B.C.D.【答案】B【解析】【分析】利用直线与直线平行的性质求解.【详解】 直线与平行,解得a=1或a=﹣2. 当a=﹣2时,两直线重合,∴a=1.故选:B.【点睛】本题考查满足条件的实数值的求法,是基础题,解题时要注意两直线的位置关系的合理运用.4.设的内角所对的边分别为,若,则()A.B.C.D.【答案】B【解析】【分析】根据正弦定理求解即可得到所求结果.【详解】由正弦定理得,∴.又,∴为锐角,∴.故选B.【点睛】在已知两边和其中一边的对角解三角形时,需要进行解的个数的讨论,解题时要结合三角形中的边角关系,即“大边(角)对大角(边)”进行求解,属于基础题.5.设,若3是与的等比中项,则的最小值为().A.B.C.D.【答案】C【解析】【分析】由3是与的等比中项,可得,再利用不等式知识可得的最小值.【详解】解:3是与的等比中项,,,=,故选C.【点睛】本题考查了指数式和对数式的互化,及均值不等式求最值的运用,考查了计算变通能力.6.已知为三条不同直线,为三个不同平面,则下列判断正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,,则【答案】C【解析】【分析】根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.7.已知点P与点关于直线对称,则点P的坐标为A.B.C.D.【答案】A【解析】【分析】根据题意,设P的坐标为(a,b),分析可得,解可得a、b的值,即可得答案.【详解】设P的坐标为(a,b),则PQ的中点坐标为(,),若点P与Q(1,﹣2)关于x+y﹣1=0对称,则有,解可得:a=3,b=0,则点P的坐标为(3,0);故选:A.【点睛】本题考查求一个点关于某直线的对称点的坐标的方法,涉及直线与直线的位置关系,属于基础题.8.己知等差数列的公差为-1,前项和为,若为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.25B.40C.50D.45【答案】D【解析】【分析】利用已知条件,结合余弦定理,转化求解数列的和,然后求解的最大值.【详解】等差数列的公差为,为某三角形的三边长,且该三角形有一个内角为,可得:,得,所以(舍或,.所以n=9或n=10时,故的最大值为.故选:.【点睛】本题主要考查等差数列的性质和等差数列的前n项和及其最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】C【解析】【分析】先由三视图确定几何体形状,再由简单几何体的体积公式计算即可.【详解】由三视图可知,该几何体由半个圆锥与一个圆柱体拼接而成,所以该几何体的体积.故选C【点睛】本题主要考查由几何体...