山东省微山县一中2019届高三数学上学期9月月考试题注意事项:1.本试题分第I卷和第Ⅱ卷两部分,第I卷为选择题,共60分;第Ⅱ卷为非选择题,共90分,满分l50分.考试时间为120分钟.2.答第I卷前,考生务必将姓名、准考证号、考试科目填写清楚,并用2B铅笔涂写在答题卡上,将第I卷选择题的答案涂在答题卡上.3.答第Ⅱ卷时须将答题纸密封线内的项目填写清楚,第Ⅱ卷的答案用中性笔直接答在答题纸指定的位置上.考试结束后,只收答题卡和第Ⅱ卷答题纸.第I卷一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1..已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.42.设是实数,则是的()A.充分不必要条件B.必要不充分条件C.充分必要条件D既不充分又不必要条件.3.已知函数,那么的值为()A.32B.16C.8D.644.设,且,则()A.B.C.D.5.已知函数的定义域为,则函数的定义域为()A.B.C.D.6.已知()fx是定义在R上的奇函数,当0x时,2()4fxxx,则不等式()0xfx的解集为()A.(,4)(4,)B.(4,0)(4,)C.(,4)(0,4)D.(4,4)7.已知,,则()A.B.C.D.8.函数的零点所在区间为()A.B.C.D.9.已知函数,若,则的值为()A.3B.0C.-1D.-210.已知0a且1a,函数(2)36(0)()(0)xaxaxfxax,满足对任意实数1212,()xxxx,都有1212()[()()]0xxfxfx成立,则实数a的取值范围是()A.B.C.D.7(2,]311.是定义在上的奇函数,对,均有,已知当时,,则下列结论正确的是()A.的图象关于对称B.有最大值1C.在上有5个零点D.当时,12.已知函数有极值,则实数的取值范围是()A.B.C.D.第Ⅱ卷本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分.13.命题“”的否定是.14.曲线在点处的切线方程为.15.已知函数的导函数为,且满足满足,则16.若函数的图象关于直线对称,则的最大值为____________.三、解答题:(解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)设命题实数满足,其中,命题实数满足(1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18(本小题满分12分)已知函数是定义在上的奇函数,且(1)求的解析式;(2)证明在上是增函数;(3)解不等式.19.(本小题满分12分)我市某矿山企业生产某产品的年固定成本为10万元,每生产千件该产品需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且(1)写出年利润(万元)关于产品年产量(千件)的函数关系式;(2)问:年产量为多少千件时,该企业生产此产品所获年利润最大?注:年利润年销售收入—年总成本20.(本小题满分12分)已知函数,曲线在点处的切线为,当时,取得极值,(1)求的值;(2)求在上的最大值和最小值.21.(本小题满分12分)已知函数(1)讨论函数的单调性;(2)证明:若,则对任意的且,有请考生在第22~23题中任选一题作答。如果多做,则按所做的第一题计分.作答时请写清题号22(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系,取相同的长度单位,已知曲线的极坐标方程为25sin,直线l的参数方程为(为参数)(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若过点3,5P的直线l与曲线C相交于M,N两点,求PMPN的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数(1)若,求实数的取值范围;(2)若不等式对于恒成立,求的取值范围.数学理科(一、二部)答案一、选择题1-5BDCAB6-10ACBBD11-12CA二、填空题13.14.15.16.三、解答题17.解:,…………………………………………2分(1)当时,,为真,解得所以实数的取值范围为………………………………………7分(2)令,是的充分不必要条件是的必要不充分条件,从而⫋,解得所以实数的取值范围为………………………………………12分18.解:(1)是定义在...