学习必备欢迎下载人教版七年级上册第一章《有理数》第三节有理数的加减法第一课时1.3.1有理数的加法一、教学目标(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。二、教学重、难点重点:了解有理数加法的意义,会根据有理数加法法则进行运算;难点:有理数的加法中异号两数如何进行加法运算。三、教学过程(一)创设情境,导入问题活动1学校的运动会刚结束不久,我们知道在足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。那么,在本次运动会中,我们学校红队进4个球,失两个球。蓝队进一个球,失一个球。请问两队的净胜球数分别是多少?如何表示?红队:4+(-2)蓝队:1+(-1)师:请同学们观察这两个式子,和我们小学所学的加法运算有什么不同呢?生:有了负数的参加师:像这种有了负数的参加的加法运算我们称为什么?想知道有理数是如何进行相加的呢?那么我们今天就来共同研究——有理数的加法(引出课题)。设计意图:采用与生活实际相关的足球比赛引入,通过净胜球数说明实际问题中要用到正数与负数的加法,从而提出问题,让学生思考,可以激发学生探究的热情。(二)启发探索,获取新知活动2看下面的问题1、一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m.如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动8m.写成算式就是:5+3=8①2、如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?学习必备欢迎下载两次运动后物体从起点向左运动8m.写成算式就是:(-5)+(-3)=-8②这个运算也可以用数轴表示,其中假设原点O为运动起点:设计意图:在一条直线上的两次运动的实例中,要说明一下几点:1、原点是第一次运动的起点;2、第二次运动的起点是第一次运动的终点;3、由第二次运动的终点与原点的相对位置得出两次运动的结果;4、如果用正数表示向右运动,用负数表示向左运动,就可以用算式描述相应的问题。活动31、如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向右运动了2m,写成算式就是:5+(-3)=2③用数轴表示为:2、探究;利用数轴求以下情况时物体两次运动的结果:(1)先向左运动5m,再向右运动3m,物体从起点向___运动了___m;(2)先向右运动5m,再向左运动5m,物体从起点向___运动了___m;(3)先向左运动5m,再向右运动5m,物体从起点向___运动了___m;(4)如果物体第一秒向右(或左)运动5m,第二秒原地不动,两秒后物体从起点向右(或左)运动了___m.师生行为:让学生自己探究,利用数轴可得出相应结果,依次填空;引导列算式为:-5+3=-2④5+(-5)=0⑤-5+5=0⑥5+0=5或-5+0=-5⑦设计意图:通过表演、结合数轴,其目的是让学生了解用数轴表示加法的方法,从而为后面利用数轴探究其他情况做准备。异号相加有三种情况,要充分利用数轴,由在数轴上表示结果的点所处的位置以及表示结果的点与原点的距离,就可以确定两次运动的结果。引导学生观察①到⑦的式子中可以发现什么规律?(①②两式是同号两数相加、③④⑤⑥是异号两数相加且⑤⑥是两加数绝对值相等、⑦是一个数与0相加)请同学们分组讨论研究和的符号以及绝对值与两个加数之间的符号以及加数绝对值之间有什么关系?从而分组概括有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加-8-5-3–1–2–3–4–5–6–7–8–9O-32512345O学习必备欢迎下载2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得03、一个数同0相加,仍得这个数有理数运算三个步骤:①确定类型②确定和的符号③确定和的绝对值设计意图:运算法则是从实例引出的,这时说明法则的合理性。使理解法则并学会运用法则(三)运用新知活动5例1计算(1)...