专题三数列与不等式1.已知等比数列{an}中,有a3a11=4a7.数列{bn}是等差数列,且a7=b7,则b5+b9=()A.2B.4C.8D.162.(2012年广东肇庆一模)观察图Z31,可推断出“x”应该填的数字是()图Z31A.171B.183C.205D.2683.在等差数列{an}中,S15>0,S16<0,则使an>0成立的n的最大值为()A.6B.7C.8D.94.一个四边形的四个内角成等差数列,最小的角为40°,则最大的角为()A.140°B.120°C.100°D.80°5.(2014年陕西)原命题为“若
1时,an=Sn-Sn-1=-=2an-2an-1⇒an=2an-1⇒{an}是首项为a1=1,公比为q=2的等比数列,即an=2n-1,n∈N*.(2)令Tn=1·a1+2·a2+3·a3+…+n·an⇒qTn=1·qa1+2·qa2+3·qa3+…+n·qan⇒qTn=1·a2+2·a3+3·a4+…+n·an+1上式左右错位相减:(1-q)Tn=a1+a2+a3+…+an-nan+1=a1-nan+1=2n-1-n·2n⇒Tn=(n-1)·2n+1,n∈N*.11.解:(1)当n≥2时,4Sn-1=a-4(n-1)-1.4an=4Sn-4Sn-1=a-a-4.a=a+4an+4=(an+2)2.∵an>0,∴an+1=an+2.∴当n≥2时,{an}是公差d=2的等差数列.∵a2,a5,a14构成等比数列,∴a=a2·a14,(a2+6)2=a2·(a2+24),解得a2=3.∵a2-a1=3-1=2,∴{an}是首项a1=1,公差d=2的等差数列.数列{an}的通项公式为an=2n-1.(2)++…+=++…+=×=×<.