3.1双曲线及其标准方程课后训练案巩固提升A组1.已知F1(-8,3),F2(2,3),动点P满足|PF1|-|PF2|=10,则P点的轨迹是()A.双曲线B.双曲线的一支C.直线D.一条射线解析:由于两点间的距离为10,所以满足条件|PF1|-|PF2|=10的点P的轨迹应为一条射线.在应用双曲线的定义时一定要注意其定义中的绝对值以及2c>2a.答案:D2.在双曲线中,,且双曲线与椭圆4x2+9y2=36有公共焦点,则双曲线的方程是()A.-x2=1B.-y2=1C.x2-=1D.y2-=1解析:椭圆的标准方程为=1,故焦点坐标为(±,0),∴c=.由,得a=2,又双曲线中c2=a2+b2,则b2=1.答案:B3.已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|等于()A.2B.4C.6D.8解析:在△PF1F2中,|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=(|PF1|-|PF2|)2+|PF1|·|PF2|,即(2)2=22+|PF1|·|PF2|,解得|PF1|·|PF2|=4.答案:B4.已知圆C:x2+y2-6x-4y+8=0,以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为()A.=1B.=1C.=1D.=1解析:由题意,知圆C仅与x轴有交点,1由得x2-6x+8=0.∴x=2或x=4,即c=4,a=2.∴双曲线方程为=1.答案:A5.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E的方程为()A.=1B.=1C.=1D.=1解析: kAB==1,∴直线AB的方程为y=x-3.由于双曲线的焦点为F(3,0),∴c=3,c2=9.设双曲线的标准方程为=1(a>0,b>0),则=1.整理,得(b2-a2)x2+6a2x-9a2-a2b2=0.设A(x1,y1),B(x2,y2),则x1+x2==2×(-12),∴5a2=4b2.又a2+b2=9,∴a2=4,b2=5.∴双曲线E的方程为=1.答案:B6.已知双曲线=1的两个焦点分别为F1,F2,若双曲线上的点P到点F1的距离为12,则点P到点F2的距离为.解析:设F1为左焦点,F2为右焦点,当点P在双曲线左支上时,|PF2|-|PF1|=10,|PF2|=22;当点P在双曲线右支上时,|PF1|-|PF2|=10,|PF2|=2.答案:22或227.已知F是双曲线=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为.解析:设双曲线的右焦点为F1,则由双曲线的定义,知|PF|=2a+|PF1|=4+|PF1|,故|PF|+|PA|=4+|PF1|+|PA|,当|PF1|+|PA|最小时,|PF|+|PA|最小.当点A,P,F1共线时,|PF1|+|PA|最小,最小值为|AF1|=5,故所求最小值为9.答案:98.双曲线=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为.解析:设|PF1|=m,|PF2|=n.①当m>n时,由=1,知a=3,b=4,∴c=5.由双曲线的定义,知m-n=2a=6. PF1⊥PF2,∴△PF1F2为直角三角形,即m2+n2=(2c)2=100.由m-n=6,得m2+n2-2mn=36,∴2mn=m2+n2-36=64.∴mn=32.设点P到x轴的距离为d,则d|F1F2|=|PF1||PF2|,即d·2c=mn.∴d=,即点P到x轴的距离为.②当m0,4+k>0,∴-4