课时跟踪检测(六)数列的通项公式与递推公式A级——学考水平达标1.已知数列{an}的首项为a1=1,且满足an+1=an+,则此数列的第4项是()A.1B.C.D.解析:选B由a1=1,∴a2=a1+=1,依此类推a4=.2.在递减数列{an}中,an=kn(k为常数),则实数k的取值范围是()A.RB.(0,+∞)C.(-∞,0)D.(-∞,0]解析:选C {an}是递减数列,∴an+1-an=k(n+1)-kn=k<0.3.数列{an}中,a1=1,对所有的n≥2,都有a1·a2·a3·…·an=n2,则a3+a5等于()A.B.C.D.解析:选C由题意a1a2a3=32,a1a2=22,a1a2a3a4a5=52,a1a2a3a4=42,则a3==,a5==.故a3+a5=.4.已知数列{an}满足要求a1=1,an+1=2an+1,则a5等于()A.15B.16C.31D.32解析:选C 数列{an}满足a1=1,an+1=2an+1,∴a2=2×1+1=3,a3=2×3+1=7,a4=2×7+1=15,a5=2×15+1=31.5.由1,3,5,…,2n-1,…构成数列{an},数列{bn}满足b1=2,当n≥2时,bn=a,则b6的值是()A.9B.17C.33D.65解析:选C bn=a,∴b2=a=a2=3,b3=a=a3=5,b4=a=a5=9,b5=a=a9=17,b6=a=a17=33.6.已知数列{an}满足a1=,an+1=an,得an=________.解析:由条件知=,分别令n=1,2,3,…,n-1,代入上式得n-1个等式,即···…·=×××…×⇒=.又 a1=,∴an=.答案:7.数列{an}的通项公式为an=n2-6n,则它最小项的值是________.解析:an=n2-6n=(n-3)2-9,∴当n=3时,an取得最小值-9.答案:-98.已知数列{an},an=bn+m(b<0,n∈N*),满足a1=2,a2=4,则b=________,a3=________.解析: ∴∴an=(-1)n+3,∴a3=(-1)3+3=2.答案:-129.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.(1)a1=0,an+1=an+2n-1(n∈N*);(2)a1=1,an+1=an+(n∈N*);(3)a1=2,a2=3,an+2=3an+1-2an(n∈N*).1解:(1)a1=0,a2=1,a3=4,a4=9.猜想an=(n-1)2.(2)a1=1,a2=,a3=,a4=.猜想an=.(3)a1=2,a2=3,a3=5,a4=9.猜想an=2n-1+1.10.已知数列{an}中,a1=1,当n∈N且n≥2时,(2n+1)an=(2n-3)an-1,求通项公式an.解:当n≥2, (2n+1)an=(2n-3)an-1,∴=,∴···…··=···…··=.∴=,∴an=,当n=1时符合上式,∴an=,n∈N*.B级——高考能力达标1.若数列{an}满足an+1=(n∈N*),且a1=1,则a17=()A.13B.14C.15D.16解析:选A由an+1=⇒an+1-an=,a17=a1+(a2-a1)+(a3-a2)+…+(a17-a16)=1+×16=13,故选A.2.在数列{an}中,a1=2,an+1=an+lg,则an=()A.2+lgnB.2+(n-1)lgnC.2+nlgnD.1+n+lgn解析:选A由an+1=an+lg⇒an+1-an=lg,那么an=a1+(a2-a1)+…+(an-an-1)=2+lg2+lg+lg+…+lg=2+lg=2+lgn.3.已知数列{an},an=-2n2+λn,若该数列是递减数列,则实数λ的取值范围是()A.(-∞,3]B.(-∞,4]C.(-∞,5)D.(-∞,6)解析:选D依题意,an+1-an=-2(2n+1)+λ<0,即λ<2(2n+1)对任意的n∈N*恒成立.注意到当n∈N*时,2(2n+1)的最小值是6,因此λ<6,即λ的取值范围是(-∞,6).4.已知函数f(x)=若数列{an}满足a1=,an+1=f(an),n∈N*,则a2018+a2019等于()A.4B.1C.D.解析:选Ba2=f=-1=;a3=f=-1=;a4=f=+=;a5=f=2×-1=;a6=f=2×-1=;即从a3开始数列{an}是以3为周期的周期数列.∴a2018+a2019=a5+a3=1.故选B.5.若数列{an}满足(n-1)an=(n+1)an-1,且a1=1,则a100=________.解析:由(n-1)an=(n+1)an-1⇒=,则a100=a1···…·=1×××…×=5050.答案:50506.已知数列{an}满足:a1=m(m为正整数),an+1=若a6=1,则m所有可能的取值为________.解析:若a5为奇数,则3a5+1=1,a5=0(舍去).若a5为偶数,则=1,a5=2.若a4为奇数,则3a4+1=2,a4=(舍去).2若a4为偶数,则=2,a4=4.若a3为奇数,则3a3+1=4,a3=1,则a2=2,a1=4.若a3为偶数,则=4,a3=8.若a2为奇数,则3a2+1=8,a2=(舍去).若a2为偶数,则=8,a2=16.若a1为奇数,则3a1+1=16,a1=5.若a1为偶数,则=16,a...