课时跟踪检测(十七)双曲线及其标准方程一、基本能力达标1.双曲线-=1上的点P到一个焦点的距离为11,则它到另一个焦点的距离为()A.1或21B.14或36C.2D.21解析:选D设双曲线的左右焦点分别为F1,F2,不妨设|PF1|=11,根据双曲线的定义知||PF1|-|PF2||=2a=10,所以|PF2|=1或|PF2|=21,而1<c-a=7-5=2,故舍去|PF2|=1,所以点P到另一个焦点的距离为21,故选D.2.已知双曲线过点P1和P2,则双曲线的标准方程为()A.-=1B.-=1C.-=1D.-=1解析:选B因为双曲线的焦点位置不确定,所以设双曲线的方程为mx2+ny2=1(mn<0).因为P1,P2两点在双曲线上,所以解得于是所求双曲线的标准方程为-=1.3.k<2是方程+=1表示双曲线的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:选A k<2⇒方程+=1表示双曲线,而方程+=1表示双曲线⇒(4-k)(k-2)<0⇒k<2或k>4⇒/k<2.4.设F1,F2是双曲线-y2=1的两个焦点,点P在双曲线上,当△F1PF2的面积为2时,PF1·PF2的值为()A.2B.3C.4D.6解析:选B设点P(x0,y0),依题意得|F1F2|=2=4,S△PF1F2=|F1F2|·|y0|=2,∴|y0|=1.又-y=1,∴x=3(y+1)=6.∴PF1·PF2=(-2-x0,-y0)·(2-x0,-y0)=x+y-4=3.5.在平面直角坐标系xOy中,已知双曲线-=1上一点M的横坐标为3,则点M到此双曲线的右焦点的距离为________.解析:由题易知,双曲线的右焦点为(4,0),点M的坐标为(3,)或(3,-),则点M到此双曲线的右焦点的距离为4.答案:46.已知双曲线C:-=1的焦距为10,点P(2,1)在直线y=x上,则C的方程为________.解析:点P(2,1)在直线y=x上,则1=,a=2b①.双曲线的焦距为10,则有a2+b2=52,将①代入上式可得b2=5,从而a2=20,故双曲线C的方程为-=1.答案:-=17.已知双曲线C1:x2-=1.求与双曲线C1有相同的焦点,且过点P(4,)的双曲线C2的标准方程.解:双曲线C1的焦点坐标为(,0),(-,0),设双曲线C2的标准方程为-=1(a>0,b>0),则解得所以双曲线C2的标准方程为-y2=1.8.若双曲线-=1的两个焦点为F1,F2,|F1F2|=10,P为双曲线上一点,|PF1|=2|PF2|,|PF1|⊥|PF2|,求此双曲线的方程.1解: |F1F2|=10,∴2c=10,c=5.又 |PF1|-|PF2|=2a,且|PF1|=2|PF2|,∴|PF2|=2a,|PF1|=4a.在Rt△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4a2+16a2=100.∴a2=5.则b2=c2-a2=20.故所求的双曲线方程为-=1.二、综合能力提升1.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a分别为3和5时,点P的轨迹分别为()A.双曲线和一条直线B.双曲线和一条射线C.双曲线的一支和一条射线D.双曲线的一支和一条直线解析:选C依题意,得|F1F2|=10.当a=3时,|PF1|-|PF2|=2a=6<|F1F2|,可知点P的轨迹为双曲线的右支;当a=5时,|PF1|-|PF2|=2a=10=|F1F2|,可知点P的轨迹为以F2为端点的一条射线.故选C.2.设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为()A.-=1B.-=1C.-=1D.-=1解析:选A对于椭圆C1, 长轴长2a1=26,∴a1=13,又离心率e1==,∴c1=5.由题意知曲线C2为双曲线,且与椭圆C1共焦点,∴c2=5,又2a2=8,∴a2=4,b2==3.又焦点在x轴上,故双曲线C2的标准方程为-=1.故选A.3.已知双曲线-=1的两个焦点分别为F1,F2,双曲线上的点P到F1的距离为12,则点P到F2的距离为________.解析:设F1为左焦点,F2为右焦点,当点P在双曲线的左支上时,|PF2|-|PF1|=10,所以|PF2|=22;当点P在双曲线的右支上时,|PF1|-|PF2|=10,所以|PF2|=2.答案:22或24.过双曲线-=1的一个焦点作x轴的垂线,则垂线与双曲线的一个交点到两焦点的距离分别为________.解析:因为双曲线方程为-=1,所以c==13,设F1,F2分别是双曲线的左、右焦点,则F1(-13,0),F2(13,0).设过F1且垂直于x轴的直线l交双曲线于A(-13,y)(y>0),则=-1=,所以y=,即|AF1|=.又|AF2|-|AF1|=2a=24,所以|AF2|=24+=.即所求距离分别为,.答案:,5.已知△ABC的两个顶点A,B分别为...