电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 242(二分法) 课件一 新人教B版必修1 课件VIP免费

高中数学 242(二分法) 课件一 新人教B版必修1 课件_第1页
1/16
高中数学 242(二分法) 课件一 新人教B版必修1 课件_第2页
2/16
高中数学 242(二分法) 课件一 新人教B版必修1 课件_第3页
3/16
2.4.12.4.1求函数零点近似解的一种计算方法求函数零点近似解的一种计算方法————二分法二分法课件课件1、函数的零点的定义:使f(x)=0的实数x叫做函数y=f(x)的零点()0()()fxyfxxyfx方程有实数根函数的图象与轴有交点函数有零点复习:2、零点存在性判定法则复习:如果函数()yfx在区间,ab上的图象是连续不断的一条曲线,并且有()()0fafb,那么,函数()yfx在区间,ab内有零点,即存在,cab,使得()0fc,这个c也就是方程()0fx的根。问题1.能否求解以下几个方程(1)x2-2x-1=0(2)2x=4-x(3)x3+3x-1=0指出:用配方法可求得方程x2-2x-1=0的解,但此法不能运用于解另外两个方程.探索新授:由图可知:方程x2-2x-1=0的一个根x1在区间(2,3)内,另一个根x2在区间(-1,0)内.xy1203y=x2-2x-1-1画出y=x2-2x-1的图象(如图)结论:借助函数f(x)=x2-2x-1的图象,我们发现f(2)=-1<0,f(3)=2>0,这表明此函数图象在区间(2,3)上穿过x轴一次,可得出方程在区间(2,3)上有惟一解.问题2.不解方程,如何求方程x2-2x-1=0的一个正的近似解(精确到0.1)?思考:如何进一步有效缩小根所在的区间?由于2.375与2.4375的近似值都为2.4,停止操作,所求近似解为2.4。数离形时少直观,形离数时难入微!2-3+xy1203y=x2-2x-1-12-3+2.5+2.25--2.375-2-3+2.25-2.5+2.375-2.4375+2-2.5+3+232.52-3+2.5+2.25-22.52.25由于2.375与2.4375的近似值都为2.4,停止操作,所求近似解为2.4。1.简述上述求方程近似解的过程x1(2,3)∈∵f(2)<0,f(3)>0x1(2,2.5)∈∴f(2)<0,f(2.5)>0x1(2.25,2.5)∈∴f(2.25)<0,f(2.5)>0x1(2.375,2.5)∈∴f(2.375)<0,f(2.5)>0x1(2.375,2.4375)∈∴f(2.375)<0,f(2.4375)>0∵f(2.5)=0.25>0∵f(2.25)=-0.4375<0∵f(2.375)=-0.2351<0∵f(2.4375)=0.105>0通过自己的语言表达,有助于对概念、方法的理解!∵2.375与2.4375的近似值都是2.4,∴x1≈2.4解:设f(x)=x2-2x-1,x1为其正的零点对于在区间[a,b]上连续不断,且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两端点逐步逼近零点,进而得到零点(或对应方程的根)近似解的方法叫做二分法.问题4:二分法实质是什么?用二分法求方程的近似解,实质上就是通过“取中点”的方法,运用“逼近”思想逐步缩小零点所在的区间。问题3.如何描述二分法?例题:利用计算器,求方程2x=4-x的近似解(精确到0.1)怎样找到它的解所在的区间呢?在同一坐标系内画函数y=2x与y=4-x的图象(如图)能否不画图确定根所在的区间?方程有一个解x0(0,4)∈如果画得很准确,可得x0(1,2)∈数学运用(应用数学)解:设函数f(x)=2x+x-4则f(x)在R上是增函数∵f(0)=-3<0,f(2)=2>0∴f(x)在(0,2)内有惟一零点,∴方程2x+x-4=0在(0,2)内有惟一解x0.由f(1)=-1<0,f(2)=2>0得:x0(1,2)∈由f(1.5)=0.33>0,f(1)=-1<0得:x0(1,1.5)∈由f(1.25)=-0.37<0,f(1.5)>0得:x0(1.25,1.5)∈由f(1.375)=-0.031<0,f(1.5)>0得:x0(1.375,1.5)∈由f(1.4375)=0.146>0,f(1.375)<0得:x0(1.375,1.4375)∈∵1.375与1.4375的近似值都是1.4,∴x0≈1.4问题5:能否给出二分法求解方程f(x)=0(或g(x)=h(x))近似解的基本步骤?1.利用y=f(x)的图象,或函数赋值法(即验证f(a)•f(b)<0),判断近似解所在的区间(a,b).;2.“二分”解所在的区间,即取区间(a,b)的中点21bax3.计算f(x1):(1)若f(x1)=0,则x0=x1;(2)若f(a)•f(x1)<0,则令b=x1(此时x0∈(a,x1));(3)若f(a)•f(x1)<0,则令a=x1(此时x0∈(x1,b)).;4.判断是否达到给定的精确度,若达到,则得出近似解;若未达到,则重复步骤2~4.练习1:求方程x3+3x-1=0的一个近似解(精确到0.01)画y=x3+3x-1的图象比较困难,变形为x3=1-3x,画两个函数的图象如何?xy10y=1-3xy=x31有惟一解x0(0,1)∈练习2:下列函数的图象与x轴均有交点,其中不能用二分法求其零点的是()Cxy0xy0xy0xy0问题5:根据练习2,请思考利用二分法求函数零点的条件是什么?1.函数y=f(x)在[a,b]上连续不断.2.y=f(x)满足f(a)·f(b)<0,则在(a,b)内必有零点.思考题从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查几个接点?123456789101112131415回顾反思(理解数学)课堂小结1.理解二分法是一种求方程近似解的常用方法.2.能借助计算机(器)用二分法求方程的近似解,体会程序化的思想即算法思想.3.进一步认识数学来源于生活,又应用于生活.4.感悟重要的数学思想:等价转化、函数与方程、数形结合、分类讨论以及无限逼近的思想.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 242(二分法) 课件一 新人教B版必修1 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部