1.6.2微积分基本定理定理(微积分基本定理)如果()fx是在区间],[ba上的连续函数,并且()(),Fxfx,则)()()(aFbFdxxfba.记:()()()|baFbFaFx则:()()|()()bbaafxdxFxFbFa11(1)(1)1bbnnaaxdxxnn(3)bbxxaaedxe1(4)lnbbxxaaadxaa12)ln(,0)bbaadxxabx(5)sincosbbaaxdxx(6)cossinbbaaxdxx12)ln()(,0)bbaadxxabx常用积分公式1(2)lnbbaadxxx例1求解.112dxx当0x时,x1的一个原函数是)0()ln(xx,dxx12112[ln()]|x.2ln2ln1ln例2求.)1sincos2(20dxxx原式20(2sincos)|xxx.23解例3设,求.215102)(xxxxf20)(dxxf解102120)()()(dxxfdxxfdxxf在]2,1[上规定当1x时,5)(xf,102152dxxdx原式.6xyo12例4求定积分02|x2-1|dx例5计算定积分13(x+1x)26xdx.解13(x+1x)26xdx=13(x+1x+2)6xdx=13(6x2+6+12x)dx=(2x3+6x+6x2)|31=(54+18+54)-(2+6+6)=112.例6计算231-xx2dx解:∵(-1x-lnx)′=1x2-1x=1-xx2,∴231-xx2dx=(-1x-lnx)|32=(-13-ln3)-(-12-ln2)=16+ln23.121xedx例7求1122221111()22xxedxeee解例8:求证2-sinxdx=1cos22x证2--sinxdx=dx1sin222xx=计算下列各定积分:1、2122)1(dxxx;2、20sindxx.4528练习21cos32xdx、2作业:P55A组:1(2)(4)B组:1(2)(3)