2.2.1对数与对数运算复习引入一般地,如果(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b.其中a(0,1)(1,∈∪+∞);N(0,∈+∞).b(-∞,∈+∞).2.指数式与对数式的互化.logNaNabNNaablog3.要点回顾(1)负数与零没有对数;(2)loga1=0,logaa=1;(3)对数恒等式练习:求下列各式中的x0)(loglog)1(52x1)(lglog)2(3x1log:5x解5x3lg:x解310x1000x4.指数运算法则),,(Rnmaaanmnm),,()(Rnmaamnnm).()(Rnbaabnnn游戏一maM设naNnmaNM则mMalognNalognmNMa)(logNMNMaaaloglog)(log你能类似地玩出下列公式吗?NMNMaaalogloglog游戏二MaMalognnMaMa)(lognManMalogMnManaloglog)(Rn1.积、商、幂的对数运算法则:如果a>0,且a≠1,M>0,N>0有:)3(loglog)2(logloglog)1(loglog)(logR)(nMnMNMNMNMMNanaaaaaaa“积的对数=对数的和”……①有时逆向运用公式:②真数的取值范围必须是(0,+∞).③对公式容易错误记忆,要特别注意:.loglog)(logNMNMaaa.110log2log5log101010如:NMMNaaaloglog)(log)3(loglog)2(logloglog)1(loglog)(logR)(nMnMNMNMNMMNanaaaaaaa32log)2(;(1)logzyxzxyaa例1用logax,logay,logaz表示下列各式:例题与练习练习课本P68练习1)3(loglog)2(logloglog)1(loglog)(logR)(nMnMNMNMNMMNanaaaaaaa例2计算例题与练习25log)1(51log)2(4.0)24(log(3)5725100lg)4(练习课本P68练习2、3)3(loglog)2(logloglog)1(loglog)(logR)(nMnMNMNMNMMNanaaaaaaa例3计算例题与练习50lg2lg)5(lg)2(25lg20lg)1(18lg7lg37lg214lg)3()3(loglog)2(logloglog)1(loglog)(logR)(nMnMNMNMNMMNanaaaaaaa课堂小结1.对数的运算法则;2.公式的逆向使用.例4例题与练习.45lg求,已知3010.02lg,4771.03lg)3(loglog)2(logloglog)1(loglog)(logR)(nMnMNMNMNMMNanaaaaaaa1.课本P74A组3、4、5;2.阅读思考《导学》P39~40;3.记得预习。课后作业