电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 34(曲线与方程)课件 北师大版选修2-1 课件VIP免费

高中数学 34(曲线与方程)课件 北师大版选修2-1 课件_第1页
1/20
高中数学 34(曲线与方程)课件 北师大版选修2-1 课件_第2页
2/20
高中数学 34(曲线与方程)课件 北师大版选修2-1 课件_第3页
3/20
数学:3.4《曲线与方程》课件PPT(北师大版选修2-1)曲线和方程1.曲线的方程和方程的曲线的概念课堂新授课堂新授课堂新授课堂新授yxoM(x0,y0)X-y=0M(x0,y0)xyo)0(2aaxy曲线的方程与方程的曲线:课堂新授课堂新授课堂新授课堂新授2.以这个方程的解为坐标的点都是曲线1.曲线上的点的坐标都是这个方程的解(在合)上的点。(合在)这个方程叫做这个曲线的方程这个曲线叫做这个方程的曲线课堂新授课堂新授课堂新授课堂新授2.如果曲线C的方程是F(x,y)=0,那么点P0(x0,y0)在曲线C上的充分必要条件是F(x0,y0)=0.例1证明圆心为坐标原点,半径等于5的圆的方程是,2522yx并判断点M2),2,52(是否在这个圆上。M1(3,-4)、M1M2oyx注意:证明要从“在,合”,“合,在”两个方面证2.求曲线的方程课堂新授课堂新授课堂新授课堂新授坐标法:把借助坐标系研究几何图形的方法叫做解析几何:是用代数方法研究几何问题的一门数学学科。坐标法。平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质。例1.设A、B两点的坐标是A(-1,-1)、B(3,7),求线段AB的垂直平分线的方程。课堂新授课堂新授课堂新授课堂新授oxyB(3,7)A(-1,-1)M解:设M(x,y)是线段AB的垂直平分线上任意一点,也就是点M属于集合P={M||MA|=|MB|},2222)7()3()1()1yxyx(即:将上式两边平方,整理得x+2y-7=0(证明略)例2.点M与两条互相垂直的直线的距离的积是常数k(k>0),求点M的轨迹方程。课堂新授课堂新授课堂新授课堂新授oyx解:取已知的两条互相垂直的直线为坐标轴,建立坐标系如右设点M的坐标为(x,y),点M的轨迹就是与坐标轴距离的积等于常数k的点的集合P={M||MR|.|MQ|=k}因为|MR|=|x|,|MQ|=|y|,所以|x|.|y|=k.kxy即QRM(证明略)其中Q,R分别是点M到x轴、y轴的垂线的垂足。求曲线的方程的一般步骤:设(建系设点)写(写等量关系)列(列方程)化(化简方程)证(以方程的解为坐标的点都是曲线上的点)课堂小结课堂小结课堂小结课堂小结---M(x,y)---P={M|M满足的条件}建立坐标系的一般规律:1.两条垂直的直线2.对称图形3.已知长度的线段以该二直线为坐标轴.以对称图形的对称轴为坐标轴.以线段所在直线为对称轴,端点或中点为原点.课堂小结课堂小结课堂小结课堂小结关于化简方程使得化简前后的方程同解.在求轨迹方程的问题中,如果化简方程过程是同解变形.则由此所得的最简方程就是所求曲线的方程,可以省略“证明”;如果化简过程不是同解变形,所求得的方程就不一定是所求曲线的方程.此时,应该通过限制x,y的取值范围来去掉增根,课堂小结课堂小结课堂小结课堂小结例3.已知一条曲线在X轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差是2,求这条曲线的方程。课堂新授课堂新授课堂新授课堂新授yoxMAB课堂课堂练习1课堂课堂练习11.到F(2,0)和Y轴的距离相等的动点的轨迹方程是:__________________平方,化简得:简解:设动点为(x,y),则由||222xyx平方,化简得:y2=4(x-1)2.三角形ABC中,若B(-2,0),C(2,0),中线AD的长为3,则A点的轨迹方程是:______课堂练习课堂练习11课堂练习课堂练习11简解:设A(x,y),则D(0,0),所以3||22yxAD即x2+y2=9(y≠0)oyx3BC-22AD•1.已知定点A(0,-1),动点P在曲线上移动,则线段AP的中点的轨迹方程是:122xy课堂练习课堂练习22课堂练习课堂练习22•2.已知三角形三顶点坐标为A(-3,0),B(3,0),C(0,2),则三角形的AB边中线的方程是:•3.已知M(1,0),N(-1,0),若则动点p的轨迹方程为:______________1PNPMkkx=0(0≤y≤2)x2+y2=1(x≠±1)y=4x21、已知平面上两个定点A、B之间的距离为2a,点M到A、B两点的距离之比为2:1,求动点M的轨迹方程。课堂练习课堂练习33课堂练习课堂练习332、一个动点P与两个定点A、B的距离的平方和为122,|AB|=10,求动点P的轨迹方程。求曲线的方程的一般步骤:1.建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(建系设点)2.写出适合条件p的点M的集合;(找等量关系)3.用坐标表示条件p(M),列出方程f(x,y)=0;(列方程)4.化简方程f(x,y)=0;5.证明以化简后的方程的解为坐标的点都是曲线上的点。(一般情况下可省略)课堂小结课堂小结课堂小结课堂小结再见

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 34(曲线与方程)课件 北师大版选修2-1 课件

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部