电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学(微积分基本定理)课件5 新人教A版选修2-2 课件VIP免费

高中数学(微积分基本定理)课件5 新人教A版选修2-2 课件_第1页
1/19
高中数学(微积分基本定理)课件5 新人教A版选修2-2 课件_第2页
2/19
高中数学(微积分基本定理)课件5 新人教A版选修2-2 课件_第3页
3/19
1.61.6微积分基本定理微积分基本定理1.61.6微积分基本定理微积分基本定理微积分基本定理:设函数f(x)在区间[a,b]上连续,并且F’(x)=f(x),则,baaFbFxxf)()(d)(这个结论叫微积分基本定理(fundamentaltheoremofcalculus),又叫牛顿-莱布尼茨公式(Newton-LeibnizFormula).).()()(d)(aFbFxFxxfbaba或记作说明:牛顿-莱布尼茨公式提供了计算定积分的简便的基本方法,即求定积分的值,只要求出被积函数f(x)的一个原函数F(x),然后计算原函数在区间[a,b]上的增量F(b)–F(a)即可.该公式把计算定积分归结为求原函数的问题。|bacx11|1nbaxn++cos|bax-sin|bax定积分公式'6)()xxbxaedeex®==ò'7)()lnbxxxaadxaaa=®=ò'15)(ln)1baxxdxx=®=ò'1)()bacxccdx=®=ò'12)nnbnaxxxnxd-®==ò'3)(sin)coscosbaxxxdx®==ò'4)(cos)sinsinbaxdxxx=-=®òln|||bax|xbae|lnxbaaa问题:通过计算下列定积分,进一步说明其定积分的几何意义。通过计算结果能发现什么结论?试利用曲边梯形的面积表示发现的结论.2sinxdx20sinxdx我们发现:(1)定积分的值可取正值也可取负值,还可以是0;(2)当曲边梯形位于x轴上方时,定积分的值取正值;(3)当曲边梯形位于x轴下方时,定积分的值取负值;(4)当曲边梯形位于x轴上方的面积等于位于x轴下方的面积时,定积分的值为0.得到定积分的几何意义:曲边梯形面积的代数和。例3:计算20(),fxdx2,01()5,12xxfxx其中解20dx)x(f102xdx215dx102x215x612F(x)=2xY=5的解析式求且点是一次函数,其图象过、已知)(,1)(),4,3()(110xfdxxfxf微积分与其他函数知识综合举例:的最大值。求、已知)(,)2()(21022afdxxaaxaf练一练:已知f(x)=ax²+bx+c,且f(-1)=2,f’(0)=0,的值求cbadxxf,,,2)(10()basvtdt()()ssbsa()()()bavtdtsbsa另一方面,这段位移还可以通过位移函数s=s(t)在[a,b]上的增量s(b)–s(a)来表达,即则有:一汽车沿直线作变速运动的规律是s=s(t)在t时刻时物体的速度为v(t)v(t)≥0,则汽车在时间间隔[a,b]内经过的位移可用速度表示为'()()stvt'()()()()babastdSvtdttsbsa【微积分基本定理】'()()()()babastdSvtdttsbsa一般地,如果函数f(x)在区间上连续,并且F’(x)=f(x),那么()()()bafxdxFbFa这个结论叫微积分基本定理又叫做牛顿—莱布尼兹公式。()()|()()bbaafxdxFxFbFa()|baFx()()FbFa为了方便起见,还常用表示例1计算下列定积分dxx10dxx102dxx1031、2、3、公式一:解:1、xx'221)(21021121|212210210)(xdxx解:2、2'331xx)(31031131|3133103102)(xdxx解:3、3'441xx)(41041141|4144104103)(xdxx【例题讲解】例2计算下列定积分公式二:解1、2'1xx)(2112|11211212)()()(xdxx解2、1'lnxx)(2ln1ln2ln|ln21211)(xdxx解3、dxxdxdxx21212121)21(dxx212dxx2111、2、3、dxx21)21(2121|)(ln2|xxdxxdx21211212ln211ln2ln212)()(例3计算下列定积分dxx20cos2、dxx20sin1、dxx202cos3、解1、xxcossin')(2020|)(sincosxdxx解2、xxsincos')(2020|)cos(sinxdxx0sin2sin1)0cos()2cos(1公式三:baba|cosx)(dxsinxbabaxdxx|)(sincos解:3、22cos1cos2xxdxxdxx2020222cos1cosdxxdx20202cos21121xx2cos2sin21')(4dxxdx202022cos21)(2020|)2sin21(|21xx)(dxxdx20202cos121)]0sin22(sin21)02[(21dxx202cos例4计算下列定积分dxxxxdxxx21222032)2)4()24()1______(1)xe12022122-121(1)(-3t+2)dt1(2)(x+)dx=______x(3)(3x+2x-1)dx=______(4)dx=______123/69e2-e+1【练习】微积分基本定理)()(|F(x))(baaFbFdxxfba牛顿-莱布尼茨公式沟通了导数与定积分之间的关系.公式一:公式二:公式三:baba|cosx)(dxsinxbabaxdxx|)(sincos【小结】

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学(微积分基本定理)课件5 新人教A版选修2-2 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部