电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

全等三角形基础练习VIP免费

全等三角形基础练习_第1页
1/17
全等三角形基础练习_第2页
2/17
全等三角形基础练习_第3页
3/17
全等三角形基础练习一.解答题(共24小题)1.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA.2.如图,AB∥ED,已知AC=BE,且点B、C、D三点共线,若∠E=∠ACB.求证:BC=DE.3.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.4.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.5.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.6.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.6题图7题图8题图7.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.8.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.9.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.9题图10题图11题图10.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=°.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.12题图13题图14题图13.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.14.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.15.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.15题图16题图17题图16.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.17.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.18.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.18题图19题图19.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.20.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.21.已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点F.求证:BF=AC.22.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.23.已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.24.发现与探究:如图,△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=45°,点B、C、E三点共线,且BC:CE=2:1,连接AE、BD.(1)在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“≌”表示),并加以证明;(2)求tan∠BDC的值.参考答案与试题解析一.解答题(共24小题)1.(2017春?高密市校级月考)如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA.【分析】由AB与AC垂直,CD与DE垂直,B与DE垂直,利用同角的余角相等得出∠DCA=∠EAB,进而得出的一对角相等,一对直角相等,以及AB=AC,利用AAS即可得证.【解答】证明: AB⊥AC,CD⊥DE,BE⊥DE,∴∠BAC=∠D=∠E=90°,∴∠CAD+∠BAE=90°,∠DCA+∠CAD=90°,∴∠DCA=∠EAB;在△ADC和△BEA中,,∴△ADC≌△BEA(AAS).【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.2.(2017春?九龙坡区校级月考)如图,AB∥ED,已知AC=BE,且点B、C、D三点共线,若∠E=∠ACB.求证:BC=DE.【分析】只要证明△ABC≌△BDE(AAS)即可解决问题.【解答】证明: AB∥DE,∴∠ABC=∠D,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴BC=DE.【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题,中考常考题型.3.(2016?河北)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

全等三角形基础练习

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部