实用文档标准文案全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.(答案)证明:连接DC,在△ACD与△BDC中ADBCACBDCDDC公共边∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=12(AB+AD),求证:∠B+∠D=180°.(答案)证明:在线段AE上,截取EF=EB,连接FC, CE⊥AB,∴∠CEB=∠CEF=90°在△CBE和△CFE中,CEBCEFEC=ECEBEF∴△CBE和△CFE(SAS)∴∠B=∠CFE AE=12(AB+AD),∴2AE=AB+AD∴AD=2AE-AB AE=AF+EF,∴AD=2(AF+EF)-AB=2AF+2EF-AB=AF+AF+EF+EB-AB=AF+AB-AB,即AD=AF在△AFC和△ADC中(AFADFACDACACAC角平分线定义)∴△AFC≌△ADC(SAS)∴∠AFC=∠D ∠AFC+∠CFE=180°,∠B=∠CFE.∴∠AFC+∠B=180°,∠B+∠D=180°.类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.证明: MQ和NR是△MPN的高,∴∠MQN=∠MRN=90°,又 ∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ和△NHQ中,12MQNQMQPNQH∴△MPQ≌△NHQ(ASA)∴PM=HN实用文档标准文案类型四、全等三角形的判定4——“角角边”例题、已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证12DEFCEFABCSSS△△△;当∠EDF绕D点旋转到DE和AC不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.解:图2成立;证明图2:过点D作DMACDNBC,则90DMEDNFMDN°在△AMD和△DNB中,AMD=DNB=90ABADBD∴△AMD≌△DNB(AAS)∴DM=DN ∠MDE+∠EDN=∠NDF+∠EDN=90°,∴∠MDE=∠NDF在△DME与△DNF中,90EMDFDNDMDNMDENDF∴△DME≌△DNF(ASA)∴DMEDNFSS△△∴DEFCEFDMCNDECFS=S=SS.△△四边形四边形可知ABCDMCN1S=S2△四边形,∴12DEFCEFABCSSS△△△类型五、直角三角形全等的判定——“HL”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()(答案)(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×.在△ABC和△ABD中,AB=AB,AD=AC,AH为第三边上的高,如下图:1、已知:如图,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.(答案与解析)证明: DE⊥AC,BF⊥AC,实用文档标准文案∴在Rt△ADE与Rt△CBF中.ADBCDEBF=,=∴Rt△ADE≌Rt△CBF(HL)∴AE=CF,DE=BF∴AE+EF=CF+EF,即AF=CE在Rt△CDE与Rt△ABF中,DEBFDECBFAECFA∴Rt△CDE≌Rt△ABF(SAS)∴∠DCE=∠BAF∴AB∥DC.(点评)从已知条件只能先证出Rt△ADE≌Rt△CBF,从结论又需证Rt△CDE≌Rt△ABF.我们可以从已知和结论向中间推进,证出题目.2、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.(答案与解析)(1)证明: DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又 ∠DBC=∠ECA=90°,且BC=CA,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,∴△CDB≌△AEC(HL)∴BD=EC=12BC=12AC,且AC=12.∴BD=6cm.(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的...