2.2.1对数与对数运算复习引入积、商、幂的对数运算法则:复习引入积、商、幂的对数运算法则:如果a>0,且a≠1,M>0,N>0有:复习引入积、商、幂的对数运算法则:如果a>0,且a≠1,M>0,N>0有:(1)loglog)(logNMMNaaa复习引入积、商、幂的对数运算法则:如果a>0,且a≠1,M>0,N>0有:(1)loglog)(logNMMNaaa(2)logloglogNMNMaaa复习引入积、商、幂的对数运算法则:如果a>0,且a≠1,M>0,N>0有:(1)loglog)(logNMMNaaa(2)logloglogNMNMaaa(3))(loglogRnMnMana计算复习练习50lg2lg)5(lg)1(2.18lg7lg37lg214lg)2(.25log20lg100求值求值思考思考讲授新课1.对数换底公式:讲授新课aNNmmalogloglog1.对数换底公式:讲授新课aNNmmalogloglog(a>0,a≠1,m>0,m≠1,N>0)1.对数换底公式:.25log20lg100求值求值思考思考例1例题用a,b表示lg3,已知a9log1825b,(1)loglog_____abbalogloglog_____abcbca(2)log_____logmnaabb(a,b>0且均不为1).化简思考思考2.两个常用的推论:1loglog)1(abba2.两个常用的推论:1loglog)1(abba1logloglogacbcba2.两个常用的推论:1loglog)1(abba1logloglogacbcbabmnbanamloglog)2(2.两个常用的推论:1loglog)1(abba1logloglogacbcbabmnbanamloglog)2(2.两个常用的推论:(a,b>0且均不为1).例题例2设log34·log48·log8m=log416,求m的值.(1)已知log1227=a,用a表示log616练习练习4log16log)2(3272(3)ab已知lna+lnb=2ln(a-2b)求log的值课堂小结换底公式及其推论