2.3.2《抛物线的简单几何性质》教学目标•知识与技能目标•使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.•从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力•过程与方法目标•复习与引入过程•1.抛物线的定义是什么?•请一同学回答.应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.”•2.抛物线的标准方程是什么?•再请一同学回答.应为:抛物线的标准方程是y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0)和x2=-2py(p>0).•下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p>0)出发来研究它的几何性质.《板书》抛物线的几何性质抛物线的简单几何性质(一)标准方程22(0)ypxp图形焦点和准线焦点(,0)2pF和准线:2plx你认为这个标准方程对应的抛物线还有什么几何性质呢?y﹒xoMFdK复习结合抛物线y2=2px(p>0)的标准方程和图形,探索其的几何性质:(1)范围(2)对称性(3)顶点类比探索x≥0,yR∈关于x轴对称,对称轴又叫抛物线的轴.抛物线和它的轴的交点.XY(4)离心率(5)焦半径(6)通径始终为常数1通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2P思考:通径是抛物线的焦点弦中最短的弦吗?利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图。特点1.抛物线只位于半个坐标平面内,虽然它可以无限延伸,但它没有渐近线;2.抛物线只有一条对称轴,没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的,为1;5.抛物线标准方程中的p对抛物线开口的影响.P越大,开口越开阔4321-1-2-3-4-5-2246810y2=xy2=xy2=2xy2=4x21图形方程焦点准线范围顶点对称轴elFyxOlFyxOlFyxOlFyxOy2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0))0,2(pF)0,2(pF)2,0(pF)2,0(pF2px2px2py2pyx≥0yR∈x≤0yR∈y≥0xR∈y≤0xR∈(0,0)x轴y轴1变式:顶点在坐标原点,对称轴是坐标轴,并且过点M(2,)的抛物线有几条,求它的标准方程.22典型例题:例1.已知抛物线关于x轴对称,顶点在坐标原点,并且过点M(2,),求它的标准方程.22当焦点在x(y)轴上,开口方向不定时,设为y2=2mx(m≠0)(x2=2my(m≠0)),可避免讨论)0(2),22,2(2PPxyMx程为所以,可设它的标准方点点,并且经过轴对称,它的顶点在原解:因为抛物线关于222)22(2pPM,即在抛物线上,所以因为点xy42准方程是因此,所求抛物线的标例2斜率为1的直线l经过抛物线24yx的焦点F,且与抛物线相交于A、B两点,求线段AB的长.解这题,你有什么方法呢?法一:直接求两点坐标,计算弦长(运算量一般较大);法二:设而不求,运用韦达定理,计算弦长(运算量一般);法三:设而不求,数形结合,活用定义,运用韦达定理,计算弦长.还有没有其他方法?法四:纯几何计算,这也是一种较好的思维.xyOFABB’A’224,(1)4,yxxx代入方程得.0162xx化简得84)(216212212121xxxxABxxxx。的长是所以,线段8AB例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.y2=4x解法一:由已知得抛物线的焦点为F(1,0),所以直线AB的方程为y=x-1xyOFABB’A’.,,),,(),,(2211BAddlBAyxByxA的距离分别为准线到设,1,121xdBFxdAFBA由抛物线的定义可知1228ABAFBFxx所以例2.斜率为1的直线L经过抛物线的焦点F,且与抛物线相交于A,B两点,求线段AB的长.y2=4x2,1,2pp.1:xl准线解法二:由题意可知,分析:运用分析:运用抛物线的定抛物线的定义和平面几义和平面几何知识来证何知识来证比较简捷.比较简捷.xyOFBAxyOFBADCxyEOFBADCHxyEOFBADCHxyEOFBADCHxyEOFBADCHxyEOFBADCH变式:过抛物线y2=2px的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切.证明:如图.xyEOFBADCH所以EH是以AB为直径的圆E的半径,且EH⊥l,因而圆E和准线l相切.设AB的中点为E,过A、E、B分别向准线l引垂线AD,EH,BC,垂足为D、H、C,则|AF|=|AD|,|BF|=|BC|∴...