电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 312(导数的几何意义)课件 新人教A版选修1-1 课件VIP免费

高中数学 312(导数的几何意义)课件 新人教A版选修1-1 课件_第1页
1/18
高中数学 312(导数的几何意义)课件 新人教A版选修1-1 课件_第2页
2/18
高中数学 312(导数的几何意义)课件 新人教A版选修1-1 课件_第3页
3/18
3.1.2《导数的几何意义》先来复习导数的概念定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量Δx时函数有相应的改变量Δy=f(x0+Δx)-f(x0).如果当Δx0时,Δy/Δx的极限存在,这个极限就叫做函数f(x)在点x0处的导数(或变化率)记作即:,|)(00xxyxf或00000()()()limlim.xxfxxfxyfxxx瞬时速度就是位移函数s(t)对时间t的导数.是函数f(x)在以x0与x0+Δx为端点的区间[x0,x0+Δx](或[x0+Δx,x0])上的平均变化率,而导数则是函数f(x)在点x0处的变化率,它反映了函数随自变量变化而变化的快慢程度.xxfxxfxy)()(00如果函数y=f(x)在点x=x0存在导数,就说函数y=f(x)在点x0处可导,如果极限不存在,就说函数f(x)在点x0处不可导.0000()()()limxxfxfxfxxx思考一下,导数可以用下式表示吗?由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:00(1)()();yfxxfx求函数的增量00()()(2);fxxfxyxx求平均变化率00(3)()lim.xyfxx取极限,得导数注意:这里的增量不是一般意义上的增量,它可正也可负.自变量的增量Δx的形式是多样的,但不论Δx选择哪种形式,Δy也必须选择与之相对应的形式.下面来看导数的几何意义:βy=f(x)PQMΔxΔyOxyβPy=f(x)QMΔxΔyOxy如图,曲线C是函数y=f(x)的图象,P(x0,y0)是曲线C上的任意一点,Q(x0+Δx,y0+Δy)为P邻近一点,PQ为C的割线,PM//x轴,QM//y轴,β为PQ的倾斜角..tan,,:xyyMQxMP则yx请问:是割线PQ的什么?斜率!PQoxyy=f(x)割线切线T请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况.我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即:'00000()()()limlimxxfxxfxykfxxx切线这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数在x=x0处的导数.例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.QPy=x2+1xy-111OMyx.2)(2lim)11(1)1(lim)()(lim:2020000xxxxxxxfxxfkxxx解因此,切线方程为y-2=2(x-1),即y=2x.求曲线在某点处的切线方程的基本步骤:先利用切线斜率的定义求出切线的斜率,然后利用点斜式求切线方程.练习:如图已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.)38,2(313Pxy上一点yx-2-112-2-11234OP313yx.])(33[lim31)()(33lim3131)(31limlim,31)1(2220322033003xxxxxxxxxxxxxxxxyyxyxxxx解:.42|22xy即点P处的切线的斜率等于4.(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.00()()()limlimxxyfxxfxfxyxx在不致发生混淆时,导函数也简称导数.000()()()()().yfxxfxfxfxx函数在点处的导数等于函数的导函数在点处的函数值什么是导函数?由函数f(x)在x=x0处求导数的过程可以看到,当时,f’(x0)是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:如何求函数y=f(x)的导数?(1)()();yfxxfx求函数的增量(2):()();yfxxfxxx求函数的增量与自变量的增量的比值0(3)()lim.xyyfxx求极限,得导函数.yxy例4.已知,求xyxxxxxx解:1yxxxx0011limlim.2xxyyxxxxx看一个例子:下面把前面知识小结:a.导数是从众多实际问题中抽象出来的具有相同的数学表达式的一个重要概念,要从它的几何意义和物理意义了解认识这一概念的实质,学会用事物在全过程中的发展变化规律来确定它在某一时刻的状态。b.要切实掌握求导数的三个步骤:(1)求函数的增量;(2)求平均变化率;(3)取极限,得导数。(3)函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即。这也是求函数在点x0处的导数的方法之一。)(0xf)(xf0|)()(0xxx...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 312(导数的几何意义)课件 新人教A版选修1-1 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部