电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 直线的一般式方程1课件 新人教A版必修2 课件VIP免费

高中数学 直线的一般式方程1课件 新人教A版必修2 课件高中数学 直线的一般式方程1课件 新人教A版必修2 课件高中数学 直线的一般式方程1课件 新人教A版必修2 课件
直线的一般式方程OXYL几何条件方程限制条件及方程0x 轴xLkyx,),(P00bkxykb ,),0(P),(,),(P222111yxPyx)(00xxkyy121121xxxxyyyy00yxyyLxxL轴轴),0(,),(P21bPoa1xbyakxyyyLxxL过原点轴轴00yx0xxxL轴问题 : 能否找到一个方程可以表示平面内的任意直线 ?探究一 : 直线的一般式方程1.平面内的任意一条直线都可以用关于 x ,y 的一个方程来表示 , 这些方程属于什么类型的方程 ?2. 对于任意一个二元一次方程 . Ax+By+C=0 ( A, B 不同时为 0 ) 都表示一条直线吗 ?平面内的任意一条直线 LAx+By+C=0 ( A, B 不同时为 0 )P(x0,y0) 是 L 上的任意一点 , 则Ax0+By0+C=0 (x0,y0) 是方程的解 , 即 Ax0+By0+C=0则 P(x0,y0) L∈.,,43,012.1的值求和分别是轴上的截距轴在已知直线例nmyxnymx34412312,120;120.1nmnmmxynyx则令则令解法3441231211212012.2nmnmnymxnymx化为截距式将直线解法.,,43,012.1的值求和分别是轴上的截距轴在已知直线例nmyxnymx34012400120)3(),4,0(),0,3(,.3nmnmnmBA直线过点由截距的定义知解法.,,43,012.1的值求和分别是轴上的截距轴在已知直线例nmyxnymx探究二 : 直线的一般式方程中的系数对直线的位置的影响直线平行于 x 轴A=0, B≠0 C ≠0直线平行于 Y 轴A ≠ 0, B=0 C ≠0A = 0, B ≠ 0 C =0A ≠ 0, B=0 C =0直线与 x 轴重合直线过原点直线与 y 轴重合C =0几何条件方程限制条件及方程优点0x 轴xLkyx,),(P00bkxykb ,),0(P),(,),(P222111yxPyx)(00xxkyy121121xxxxyyyy00yxyyLxxL轴轴),0(,),(P21bPoa1xbyakxyyyLxxL过原点轴轴00yx0xxxL轴点 P,K点 P,K点 P1,P2截距 a,b无限制条件Ax+By+C=0两个独立条件重合与的值试分别求实数直线直线已知例21212121.)3//).2.)1.m023)2(:,06::.2llllllmyxmLmyxL

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 直线的一般式方程1课件 新人教A版必修2 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部