用“分离系数法”求直线过定点问题在各种复习参考资料以及各类考试中,常见一类求直线过定点的问题 .这类问题一般可用直线系知识应用“分离系数法”求解决.定理:直线必经过直线和的交点(A1、B1和 A2、B2不同时为零).证明:设的交点为,则有,,把的坐标代入 l 方程的左边得((,的坐标满足 l 方程,即直线 l 经过 l1与l2的交点.一般地,定理中直线 l 的方程称为过 l1和 l2的交点的直线系方程(不包括 l2).例 1.求证:无论 m 取何实数,直线恒过定点,并求此定点的坐标.分 析 : 已 知 方 程 实 际 上 是 含 有 一 个 参 数 m 的 直 线 系 方 程 , 把 x,y 系 数 中 的 m 分 离 出 来 化 为的形式,则根据定理无论 m 取何实数,它必过的交点.我们把这种方法就叫做分离系数法.证明:将已知直线方程化为,它表示过两直线的交点的直线系,解方程组解得∴原直线恒过定点(2,3).例 2.已知满足,则直线必过定点( )A. () B.() C.( ) D. ()分析:方程中虽有两个参数,但又满足条件,所以实际上还是只有一个参数的直线系方程.也就是根据已知条件在方程中消去 p,分离系数 q 就可求得定点坐标.解:∵,∴代入方程得化为,它表示过两直线的交点的直线系方程,解方程组:.∴原直线过定点(),选 C.练习题:1.无论 a 为何实数值,直线恒过一定点,并求出这个定点坐标.2.已知,求证:直线必过定点,并求这个定点坐标.[答案:1.(-1,6);2.(10,-15)]用心 爱心 专心