I摘 要本文介绍了数形结合思想的背景及其证明,并通过具体的实例,对于数学问题当中的,集合解析,函数解析,几何问题,不等式问题以及方程组问题等等一系列问题,比较系统地阐述了数形结合思想在数学当中的应用. 关键词: 数形结合;集合;函数;解析几何;不等式;方程IIAbstractThis paper introduces the background and proof of the thought of combination of numbers and shapes, and through concrete examples, probes into the application of the thought of combination of numbers and shapes in sets, functions (trigonometric functions), analytic geometry, inequalities, equations and other aspects, and systematically expounds the application of the thought of combination of numbers and shapes in mathematics.Keywords:combination of numbers and shapes; Collection; Functions ; Analytic geometry; Inequality; equation目 录摘 要....................................................................IABSTRACT.................................................................II0 引言....................................................................11 数形结合思想及相关理论..................................................12 数形结合思想在高中数学解题中的应用......................................4 2.1 数形结合思想在集合问题中的应用....................................7 2.2 数形结合思想在函数问题中的应用...................................10 2.3 数形结合思想在解析几何问题中的应用...............................11 2.4 数形结合思想在不等式问题中的应用.................................12结语.....................................................................14致谢.....................................................................14参考文献.................................................................15第 1 页 共 15 页0 引言将数学当中应用到的数与性间进行对应的方法叫做,相比较于传统的数学授课方式,数形结合更加适用于目前的教学模式,数形结合能够将抽象的数学关系以及数学图形等等进行连接,根据“以形助数”以及“以数解形”...