- 1 - 二元一次方程组应用探索 二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、列二元一次方程组来加以解决,现将常见的几种题型归纳如下: 一、数字问题 例 1 一个两位数,比它十位上的数与个位上的数的和大 9;如果交换十位上的数与个位上的数,所得两位数比原两位数大 27,求这个两位数. 分析:设这个两位数十位上的数为 x,个位上的数为 y,则这个两位数及新两位数及其之间的关系可用下表表示: 解方程组1 091 01 02 7xyxyyxxy,得14xy,因此,所求的两位数是14. 点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为 x,或只设十位上的数为 x,那将很难或根本就想象不出关于 x的方程.一 十 位 上的数 个 位 上的数 对应的两位数 相等关系 原 两位数 x y 10x+y 10x+y=x+y+9 新 两位数 y x 10y+x 10y+x=10x+y+27 - 2 - 般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之. 二、利润问题 例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少? 分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10. 解方程组0 .92 0 %0 .81 0xyyxy,解得2 0 01 5 0xy, 因此,此商品定价为200元. 点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念. 三、配套问题 例3 某厂共有120名生产工人,每个工人每天可生产螺栓 50个或螺母 20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺 - 3 - 栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套? 分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天...