二元一次方程组及代入法 一、本讲教学内容及要求 了解二元一次方程、二元一次方程组和它的解的概念。 会检查一对数值是不是某个二元一次方程的一个解。 灵活运用代入法解二元一次方程组。 了解代入法解二元一次方程组的思想方法。 二、本讲的重点、难点和关键: 1 .重点:一次方程组的解法——代入法和加减法。 2 .难点:选用合理、简捷的方法解二元一次方程组。 3 .关键:了解“消元法”的思想方法,设法消去方程中的一个未知数将“二元”转化成“一元”。 灵活地运用“代入法”和“加减法”。 三、本讲重要数学思想: 1 .通过一次方程组解法的学习,领会多元方程组向一元方程转化(化归)的思想。 2 .在较复杂的方程组解法的训练中,渗透换元的思想。 四、主要数学能力: 1 .通过用代入消元法解二元一次方程组及加减消元法解二元一次方程组的训练及选用合理、简捷的方法解方程组,培养运算能力。 2 .通过对方程组中未知数系数特点的观察和分析,明确二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养观察能力和发展逻辑思维能力。 五、化归思想: “解题就是把习题归结为已经解过的问题”这种关于解题的数学思想称为“化归”。它体现了“在一定条件下,不同事物可以互相转化。”的唯物辩证观点,是解数学题的一盏指路明灯。 本章中“化归”思想的突出运用有: 1.化陌生为熟悉。“化二元为一元”,化“三元为二元”。即将陌生的二元一次方程组化为熟悉的一元一次方程来解。这种将陌生的问题化为熟悉的问题来处理,这是数学解题中具有普遍指导意义的数学思想。应该深入地领会并自觉地运用到数学的学习中。 2.化复杂为简单。解方程组时,形式复杂的二元一次方程组往往难以直接消元或不便于直接消元时,一般要把它先化为形式简单的方程组然后再消元求解。 3.化实际问题为数学问题。利用一次方程组的知识求解有关的应用题时,分析方法与解题步骤与列出一元一次方程解应用题类似。通过认真分析题目中的未知量和已知量之间的关系,找出它们相等关系据此列出方程组。将应用问题“化为”解方程组的问题来解决。把实际问题化为数学问题来处理,这是利用数学知识解实际问题的基本途径。 六、易错分析: 1.判断一个方程是不是二元一次方程,一般要将方程化为一般形式后再根据定义判断。 2.二元一次方程的解:一个二元一次方程有无数个解,而每一个解都是一对数值。求二元一次方程的解的方法:若...