算法四:支持向量机 说到支持向量机,必须要提到july大神的《支持向量机通俗导论》,个人感觉再怎么写也不可能写得比他更好的了。这也正如青莲居士见到崔颢的黄鹤楼后也只能叹“此处有景道不得”。不过我还是打算写写SVM的基本想法与 libSVM中R的接口。 一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保留较少的点)达到一个可比的效果呢? 要回答这个问题,我们首先必须思考如何确定点的代表性?我想关于代表性至少满足这样一个条件:无论非代表性点存在多少,存在与否都不会影响我们的决策结果。显然如果仍旧使用 KNN算法的话,是不会存在训练集的点不是代表点的情况。那么我们应该选择一个怎样的“距离”满足仅依靠代表点就能得到全体点一致的结果? 我们先看下面一个例子:假设我们的训练集分为正例与反例两类,分别用红色的圆圈与蓝色的五角星表示,现在出现了两个未知的案例,也就是图中绿色的方块,我们如何去分类这两个例子呢? 在KNN算法中我们考虑的是未知样例与已知的训练样例的平均距离,未知样例与正例和反例的“距离”谁更近,那么他就是对应的分类。 同样是利用距离,我们可以换一个方式去考虑:假设图中的红线是对正例与反例的分类标准(记为 w x+b=0),那么我们的未知样例与红线的“距离”就成了一个表示分类信度的标准,而 w y+b(y为未知样例的数据)的符号则可以看成是分类的标识。 但是遗憾的是我们不知道这样的一条分类标准(分类线)是什么,那么我们一个比较自然的想法就是从已知的分类数据(训练集)里找到离分割线最近的点,确保他们离分割面尽可能的远。这样我们的分类器会更稳健一些。 从上面的例子来看,虚线穿过的样例便是离分割线最近的点,这样的点可能是不唯一的,因为分割线并不确定,下图中黑线穿过的训练样例也满足这个要求: 所以“他们离分割面尽可能的远”这个要求就十分重要了,他告诉我们一个稳健的超平面是红线而不是看上去也能分离数据的黄线。 这样就解决了我们一开始提出的如何减少储存量的问题,我们只要存储虚线划过的点即可(因为在 w x+b=-1左侧,w x+b=1右侧的点无论有多少都不会影响决策)。像图中虚线划过的,距离分割直线(比较专业的术语是超平面)最近的点,我们称之为支持向量。这也就是为什么我们这种分类方法叫做支持向量机的原因。 至此,我们支持向量机的分类问题转化为了如何寻找...