简便运算 分数经典简便运算题 2019 年7 月 第一种类型:连乘——乘法交换律的应用 例题 :1)1 4741 35 2)56153 3)2 66831 41 3 涉及定律:乘法交换律 bcacba 基本方法:将分数相乘的因数互相交换,先行运算。 第二种类型:乘法分配律的应用 例题: 1)2 7)2 7498( 2)2 0)4152( 3) 1 819776 涉及定律:乘法分配律 bcaccba)( 基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。 第三种类型:乘法分配律的逆运算(提取公因数) 例题:1)21311 5121 简便运算 2)61959565 3) 751754 涉及定律:乘法分配律逆向定律 )(cbacaba 基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。 第四种类型:添加因数“1” 例题:1)759575 2)92921 67 3)2 32 33 11 72 33 11 4 涉及定律:乘法分配律逆向运算 基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。 第五种类型:数字化加式或减式 例题:1)2 0 1 62 0 1 52 0 1 7 简便运算 2)2 0 1 72 0 1 61 9 9 8 3)1 3 53 41 3 6 涉及定律:乘法分配律逆向运算 基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1 等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。 注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。例如:999 可化为1000-1。其结果与原数字保持一致。 第六种类型:带分数化加式 例题:1)51322 6 2)81534 1 3)1 351 27 涉及定律:乘法分配律 简便运算 基本方法:将带分数转化为整数部分和分数部分相加的形式,还可以转化成整数和带分数相加的形式,目的是便于约分。再按照乘法分配律计算。 第七种类型:乘法交换律与乘法分配律相结合(转化法) 例题:1)247179249175 2)1981361961311 3)1381137138137139 涉及定律:乘法交换律、乘法分配律逆向运算 基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。 注意:只...