电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

二次根式的概念与性质VIP免费

二次根式的概念与性质_第1页
1/12
二次根式的概念与性质_第2页
2/12
二次根式的概念与性质_第3页
3/12
二次根式的概念与性质 编稿:庄永春 审稿:邵剑英 责编:张杨 一、目标认知 1.学习目标: 理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握下列结论:,,,并利用它们进行计算和化简. 2.重点: ;,及其运用. 3.难点: 利用,,解决具体问题. 二、知识要点梳理 知识点一:二次根式的概念 一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号. 要点诠释: 二次根式的两个要素:①根指数为 2;②被开方数为非负数. 知识点二:二次根式的性质 1.; 2.; 3.; 4. 积的算术平方根的性质:; 5. 商的算术平方根的性质:. 要点诠释: 二次根式 (a≥0)的值是非负数,其性质可以正用亦可逆用,正用时去掉根号起到化简的作用;逆用时可以把一个非负数写成完全平方的形式,有利于在实数范围内进行因式分解. 知识点三:代数式 形如5,a,a+b,ab,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式(algebraic expression). 三、规律方法指导 1.如何判断一个式子是否是二次根式? (1)必须含有二次根号,即根指数为2; (2)被开方数可以是数也可以是代数式但必须是非负的,否则在实数范围内无意义. 2.如何确定二次根式在实数范围内有意义? 要使二次根式在实数范围内有意义必须满足被开方数为非负数.要确定被开方数中所含字母的取值范围,可根据题意列出不等式,通过解不等式确定字母的取值范围.当二次根式作为分母时要注意分母不能为零. 经典例题透析 类型一:二次根式的概念 1、下列式子,哪些是二次根式,哪些不是二次根式: 、、、(x>0)、、、、、 (x≥0,y≥0). 思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 解:二次根式有:、(x>0)、、、 (x≥0,y≥0); 不是二次根式的有:、、、. 2、当x 是多少时, 在实数范围内有意义? 思路点拨:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才 能有意义. 解:由3x-1≥0,得 :x≥ 当x≥时,在实数范围内有意义. 总结升华:要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 举一反三 【变式1】x 是怎样的实数时,下列各式实数范围内有意义? (1); (2); 解:(1)由 ≥0,解得:x 取任意实数 ∴ 当 x 取任意实数时,二次根式在实数范围内都...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

二次根式的概念与性质

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部