1 初一几何证明题 1.如图,AD∥BC,∠B=∠D,求证:AB∥CD。 2.如图CD⊥AB,EF⊥AB,∠1=∠2,求证:∠AGD=∠ACB。 3. 已知∠1=∠2,∠1=∠3,求证:CD∥OB。 4. 如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP。 BDE/FCA2G3BDCABD/PCAO23BD/PCO2 2 5. 已知∠1=∠2,∠2=∠3,求证:CD∥EB。 6. 如图∠1=∠2,求证:∠3=∠4。 7. 已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。 8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。 BDE/CO23BD/CA234BDEFCAG213acdb 3 9.如图,AC∥DE,DC∥EF,CD 平分∠BCA,求证:EF 平分∠BED。 10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l1∥l2,l3∥l5,l2∥l4。 11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB∥CD。 12、如图,∠A=2∠B,∠D=2∠C,求证:AB∥CD。 ABCDFE21lll3412345l21ABCD34EBCDOA 4 13、如图,EF∥G H ,AB、AD、CB、CD 是∠EAC、∠FAC、∠G CA、∠H CA 的平分线,求证:∠BAD=∠B=∠C=∠D。 14、已知,如图,B、E、C 在同一直线上,∠A=∠DEC,∠D=∠BEA,∠A+∠D=900,求证:AE⊥DE,AB∥CD。 15、如图,已知,BE 平分∠ABC,∠CBF=∠CFB=650,∠EDF=500,,求证:BC∥AE。 16、已知,∠D=900,∠1=∠2,EF⊥CD,求证:∠3=∠B。 17、如图,AB∥CD,∠1=∠2,∠B=∠3,AC∥DE,求证:AD∥BC。 BCDFEAGHBCDEABCDEA21BCDF3EA21BCD3EA 5 初一常用几何证明的定理总结 对顶角相等: 几何语言: ∠1、∠2 是对顶角 ∴∠1=∠2(对顶角相等) 垂线: 几何语言:正用 反用: ∠AO B=90° AB⊥CD ∴AB⊥CD(垂直的定义) ∴∠AO B=90°(垂直的定义) 证明线平行的方法: 1、平行公理 如果两条直线都与第三条直线平行,那么,这两条直线也平行。 简述为:平行于同一直线的两直线平行。 几何语言叙述: 如图: AB∥EF,CD∥EF ∴AB∥CD(平行于同一直线的两直线平行。) 2、同位角相等,两直线平行。 几何语言叙述: 如图: 直线AB、CD 被直线EF 所截 ∠1=∠2 ∴AB∥CD(同位角相等,两直线平行。) 3、内错角相等,两直线平行。 几何语言叙述: 如图: 直线AB、CD 被直线EF 所截,∠1=∠2 ∴AB∥CD(内错角相等,两直线平行。) 4、同旁内角互补,两直线平行。 几何语言叙述: 如图: 直线AB、CD 被直线EF 所截,∠1+∠2=180O ∴AB∥CD(同旁内角互补,两直线平行。) 6 ...