复数·复数的乘法及其几何意义·教案 教学目标 1.掌握用复数的三角形式进行乘法运算的法则及其推导过程. 2.掌握复数乘法的几何意义. 3.让学生领悟到“转化”这一重要数学思想方法. 4.培养学生探索问题、分析问题、解决问题的能力. 教学重点与难点 重点:复数的三角形式是本节内容的出发点,复数的乘法运算. 难点:复数乘法运算的几何意义,不易为学生掌握. 教学过程设计 师:前面我们学习了复数的代数形式的运算和复数的三角形式,请大家用 5 分钟的时间,完成以下两道题的演算. (利用投影仪出示) 1.(1-2i)(2+i)(4+3i); 想出算法后,请大家在笔记本上演算,允许同学之间交换意见. (教师在教室里巡视,稍过几分钟,请一位已经做完的同学在黑板上写出推导过程) 学生板演: z1·z2=r1(cosθ1+isinθ1)·r2(cosθ2+isinθ2) =(r1cosθ1+ir1sinθ1)·(r2cosθ2+ir2sinθ2) =(r1r2cosθ1cosθ2-r1r2sinθ1sinθ2)+i(r1r2sinθ1cosθ2+r1r2cosθ1sinθ2) =r1r2[(cosθ1cosθ2-sinθ1sinθ2)+i(sinθ1cosθ2+cosθ1sinθ2] =r1r2[cos(θ1+θ2)+isin(θ1+θ2)]. 师:很好,你是怎样想出来的?为什么这样想? 生:我们已经学过复数的代数形式运算,因此把三角形式化为代数形式,按着代数形式的乘法运算法则就可以完成运算.根据数学求简的原则,运用三角公式把结果化简. 在已知的基础上发展和探索未知的东西,解题时,把未知转化成已知,这是重要的思想方法.我是根据这个思想才想出来的. 师:观察这个问题的已知和结论,同学们能发现有什么规律吗? 生:两个复数相乘,积的模等于各复数模的积,积的复角等于各复数的辐角的和. 师:利用这个结论,请同学们计算: 这就是复数的三角形式乘法运算公式. 三角形式是由模和辐角两个量确定的,进行乘法运算时要清楚模怎样算?辐角怎样算? 使用复数的三角形式进行运算的条件是复数必须是三角形式的标准式,辐角不要求一定是主值. 同学们已经了解,复数通过几何表示,把复数与复平面内的点或从原点出发的向量建立起一一对应后,复数不仅取得了实际的解释,而且确实逐步展示了它的广泛应用.我们已经研究了复数加、减法的几何意义,并感觉到了它的用途,请大家讨论一下,学习了复数的三角形式运算对复数乘法的几何意义有什么启发呢? (同学分组讨论,请小组代表发言.如果条件允许,在学生发言同时,用多媒体辅助教学,演示模伸...