电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

结构屈曲失稳的知识VIP免费

结构屈曲失稳的知识_第1页
1/20
结构屈曲失稳的知识_第2页
2/20
结构屈曲失稳的知识_第3页
3/20
对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题: A. 整个结构的稳定性 B. 构成结构的单个杆件的稳定性 C. 单个杆件里的局部稳定(如其中的板件的稳定) A 整个结构的稳定性: 1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳 特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态 2:极值点失稳 特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失 稳时相应的荷载称为极限荷载。 3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。 B 构成结构的单个杆件的稳定性 通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。 C 单个杆件里的局部稳定(如其中的板件的稳定) 在MIDAS 里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。和 A 是同样的道理,这里充分体现了结构即构件,构件即结构的道理 A 整个结构的稳定性: 分析方法: 1:线性屈曲分析(对象:桁架,粱,板) 在一定变形状态下的结构的静力平衡方程式可以写成下列形式: (1) : 结构的弹性刚度矩阵 : 结构的几何刚度矩阵 :结构的整体位移向量 :结构的外力向量 结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过 N=3.1415^ 2*E*I/L^ 2 时,杆 的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。临界荷载可以用已知的初始值和临界荷载的乘积计算得到。 临界荷载和屈曲模态意味着所输入的临界荷载作用到结构时,结构就发生与屈曲模态相同形态的屈曲。例如,当初始荷载为 10 的结构进行屈曲分析时,求得临界荷载系数为 5,这表明这个结构物受 50 的荷载时发生屈曲。但是实际上的结构不管是几何方面还是材料方面都呈现非线性性质,所以实际应用当中是有一些局限性的,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

结构屈曲失稳的知识

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部