闪光导热仪LFA原理与测试一、概述材料的导热性能测试方法众多, 大体可分为稳态法与瞬态法两大类。 其中稳态法(包括热流法、保护热流法、热板法等)根据 Fourier方程直接测量导热系数,但温度范围与导热系数范围较窄,主要适用于在中等温度下测量中低导热系数材料。瞬态法则应用范围较为宽广,尤其适合于高导热系数材料以及高温下的测试,其中发展最快、最具代表性、得到国际热物理学界普遍承认的方法是闪光法(FlashMethod,有时也称为激光法,激光闪射法)。闪光法所要求的样品尺寸较小,测量范围宽广,可测量除绝热材料以外的绝大部分材料,特别适合于中高导热系数材料的测量。除常规的固体片状材料测试外,通过使用合适的夹具或样品容器并选用合适的热学计算模型,还可测量诸如液体、粉末、纤维、薄膜、熔融金属、基体上的涂层、多层复合材料、各向异性材料等特殊样品的热传导性能。闪光法相关测量标准:ASTME1461:StandardTestMethodforThermalDiffusivityofSolidsbytheFlashMethodDINEN821DIN30905二、原理闪光法直接测量的是材料的热扩散系数,其基本原理示意如下:图中在一定的设定温度T(由炉体控制的恒温条件)下,由激光源或闪光氙灯在瞬间发射一束光脉冲,均匀照射在样品下表面,使其表层吸收光能后温度瞬时升高,并作为热端将能量以一维热传导方式向冷端(上表面)传播。使用红外检测器连续测量样品上表面中心部位的相应温升过程,得到类似于下图的温度(检测器信号)升高对时间的关系曲线:在理想情况下,光脉冲宽度接近于无限小,热量在样品内部的传导过程为理想的由下表面至上表面的一维传热、不存在横向热流,外部测量环境则为理想的绝热条件、不存在热损耗(此时样品上表面温度升高至图中的顶点后将保持恒定的水平线),则通过计量图中所示的半升温时间t50(定义为在接受光脉冲照射后样品上表面温度(检测器信号)升高到最大值的一半所需的时间,或称t1/2),由下式:α=0.1388*d2/t50(d:样品的厚度)即可得到样品在温度T下的热扩散系数α。对于实际测量过程中对理想条件的任何偏离(如边界热损耗、样品表面与径向的辐射散热、边界条件或非均匀照射导致的径向热流、样品透明/半透明而表面涂覆不够致密导致的部分光能量透射或深层吸收、t50很短导致光脉冲宽度不可忽略等),需使用适当的数学模型进行计算修正。由于导热系数(热导率)与热扩散系数存在着如下的换算关系:λ(T)=α(T)*Cp(T)*ρ(T)在已知温度T下的热扩散系...