1 第2章 符号运算 习题 2 及解答 1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度”对象,还是“符号”符号对象? 3/7+0.1; sym(3/7+0.1); sym('3/7+0.1'); vpa(sym(3/7+0.1)) 〖目的〗 不能从显示形式判断数据类型,而必须依靠 class 指令。 〖解答〗 c1=3/7+0.1 c2=sym(3/7+0.1) c3=sym('3/7+0.1') c4=vpa(sym(3/7+0.1)) Cs1=class(c1) Cs2=class(c2) Cs3=class(c3) Cs4=class(c4) c1 = 0.5286 c2 = 37/70 c3 = 0.52857142857142857142857142857143 c4 = 0.52857142857142857142857142857143 Cs1 = double Cs2 = sym Cs3 = sym Cs4 = sym 2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认为是自由符号变量. sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') 〖目的〗 理解自由符号变量的确认规则。 〖解答〗 symvar(sym('sin(w*t)'),1) ans = w symvar(sym('a*exp(-X)'),1) ans = a 2 symvar(sym('z*exp(j*th)'),1) ans = z 5 求符号矩阵333231232221131211aaaaaaaaaA的行列式值和逆,所得结果应采用“子表达式置换”简洁化。 〖目的〗 理解 su bex pr 指令。 〖解答〗 A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]') DA=det(A) IA=inv(A); [IAs,d]=subexpr(IA,d) A = [ a11, a12, a13] [ a21, a22, a23] [ a31, a32, a33] DA = a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31 IAs = [ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 - a13*a22)] [ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d*(a11*a23 - a13*a21)] [ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 - a12*a21)] d = 1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31) 8 (1 )通过符号计算求 ttysin)(的导数dtdy 。(2 )然后根据此结果,求 0tdtdy和2tdtdy。 〖目的〗 diff, limit 指令的应用。 如何理解运行结果。 〖解答〗 syms t y=abs(sin(t)) 3 d=diff(y) %求dy/dt d0_=limit(d,t,0,'left') %求dy/dt|t=0- dpi_2=limit(d,t,pi/2) %求dy/dt|t=pi/2 y = abs(sin(t)) ...