【中考专项复习】全等三角形的常见模型 【回归概念】 概念:经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形 [1] ,而该两个三角形的三条边及三个角都对应相等。全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。全等三角形是几何中全等之一。 [2] 根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。 规律: 全等三角形基本模型: 1.平移模型 2.对称模型 3.旋转模型 4.三垂直模型 5.一线三等角模型 【规律探寻】 构造全等三角形的一般方法 1.题目中出现角平分线 (1)通过角平分线上的某个已知点,向两边作垂线,这是利用角平分线的性质定理或者逆定理来构造的全等三角形 (2)在角平分线的某个已知点,作角平分线的垂线和两边相交,构造全等三角形。 (3)在该角的两边,距离角的顶点相等长度的位置上截取两点,分别连接这两点与角平分线上的某已知点,构造全等三角形 2.题目中出现中点或者中线(中位线) (1)倍长中线法,把中线延长至二倍位置 (2)过中点作某一条边的平行线 3.题目中出现等腰或者等边三角形 (1)找中点,倍长中线 (2)过顶点作底边的垂线 (3)过某已知点作一条边的平行线 (4)三线合一 4.题目中出现三条线段之间的关系 通常用截长补短法,在某条线段上截取一段线段,使之与特定的线段相等,或者将某条线段延长,使之与特定线段相等。这种方法,在证明多条线段的和、差、倍、分关系时,效果非常好。 5.题目中出现垂直平分线 把线段两端点与垂直平分线上的某点连接 6.某些特定题目中还可以使用旋转法、翻折法等。 【典例解析】 例题1:】(2019 湖南益阳8 分)已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EAD. 【分析】由∠ECB=70°得∠ACB=110°,再由 AB∥DE,证得∠CAB=∠E,再结合已知条件 AB=AE,可利用AAS 证得△ABC≌△EAD. 【解答】证明:由∠ECB=70°得∠ACB=110° 又 ∠D=110° ∴∠ACB=∠D AB∥DE ∴∠CAB=∠E ∴在△ABC 和△EAD 中 ∴△ABC≌△EAD(AAS). 【点评】本题是全等三角形证明的基础题型,在有些条件还需要证明时,应先把它们证出来,再把条件用大括号列出来,根据等三角形证明的方法判定即可. 例题2:(2019,山...