26.1.1 二次函数 1. 了解二次函数的有关概念. 2. 会确定二次函数关系式中各项的系数。 3. 确定实际问题中二次函数的关系式。 一、知识链接: 1.若在一个变化过程中有两个变量x和y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说y是x的 ,x叫做 。 2. 形如___________y 0)k (的函数是一次函数 二、自主学习: 1.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。 分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = . 2.n支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n之间的关系式_______________________. 3.用一根长为40cm 的铁丝围成一个半径为r 的扇形,求扇形的面积S 与它的半径r 之间的函数关系式是 。 4.观察上述函数函数关系有哪些共同之处? 。 5.归纳:一般地,形如 ,(, ,a b ca是常数,且 )的函数为二次函数。其中x 是自变量,a 是__________,b是___________,c是_____________. 三、合作交流: (1)二次项系数a 为什么不等于 0? 答: 。 (2)一次项系数b 和常数项c 可以为0 吗? 答: . 四、跟踪练习 1.观察:①26yx;②235yx ;③y=200x2+400x+200;④32yxx;⑤213yxx;⑥221yxx.这六个式子中二次函数有 。(只填序号) 2.2(1)31mmymxx 是二次函数,则m 的值为______________. 5.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带 ABCD,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m,绿化带的面积为y m2.求y与x之间的函数关系式,并写出自变量x的取值范围. 26.1.2 二次函数 2yax的图象 【学习目标】 1.知道二次函数的图象是一条抛物线; 2.会画二次函数y=ax2 的图象; 3.掌握二次函数y=ax2 的性质,并会灵活应用.(重点) 一、知识链接: 1.画一个函数图象的一般过程是① ;② ;③ 。 2.一次函数图象的形状是 ;. 二、自主学习 (一)画二次函数y=x2 的图象. 列表: x … -3 -2 -1 0 1 2 3 … y=x2 … … 在图(3)中描点,并连线 1 .思考:图(1)和图(2)中的连线正确吗?为什么?连线中我们应该...