第一章 集合与简易逻辑 第一教时 教材:集合的概念 目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。 过程: 一、引言:(实例)用到过的“正数的集合”、“负数的集合” 如:2x-1>3 x>2 所有大于 2 的实数组成的集合称为这个不等式的解集。 如:几何中,圆是到定点的距离等于定长的点的集合。 如:自然数的集合 0,1,2,3,…… 如:高一(5)全体同学组成的集合。 结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 指出:“集合”如点、直线、平面一样是不定义概念。 二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋} 用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5} 常用数集及其记法: 1.非负整数集(即自然数集) 记作:N 2.正整数集 N*或 N+ 3.整数集 Z 4.有理数集 Q 5.实数集 R 集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性 (例子 略) 三、关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说 a 属 于集A 记作 aA ,相反,a 不属于集A 记作 aA (或aA) 例: 见P4—5 中例 四、练习 P5 略 五、集合的表示方法:列举法与描述法 1.列举法:把集合中的元素一一列举出来。 例:由方程x2-1=0 的所有解组成的集合可表示为{1,1} 例;所有大于0 且小于10 的奇数组成的集合可表示为{1,3,5,7,9} 2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。 ① 语言描述法:例{不是直角三角形的三角形} 再见P6 例 ② 数学式子描述法:例 不等式 x-3>2 的解集是{xR| x-3>2} 或{x| x-3>2}或{x:x-3>2} 再见P6 例 六、集合的分类 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 例题略 3.空集 不含任何元素的集合 七、用图形表示集合 P6 略 八、练习 P6 小结:概念、符号、分类、表示法 九、作业 P7 习题 1.1 第二教时 教材: 1、复习 2、《课课练》及《教学与测试》中的有关内容 目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。 过程: 一、 复习:(结合提问) 1.集合的概念 含集合三要素 2.集合的表示、符号、常用数集、列举法、描述法 3.集合的分类:有限集、无限集、空集、单元集、...