1 因式分解方法归纳总结 第一部分:方法介绍 初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍. 一、提公因式法.:m a+m b=m (a+b) 二、运用公式法. (1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b); (2) (a±b)2 = a2±2ab+b2 ——— a2±2ab+b2=(a±b)2; (3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2); (4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2). 下面再补充两个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); 例.已知abc,,是 ABC的三边,且222abcabbcca, 则 ABC的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222abcabbccaabcabbcca 222()()()0abbccaabc 三、分组分解法 例 2、分解因式:bxbyayax5102 解法一:第一、二项为一组; 解法二:第一、四项为一组; 第三、四项为一组。 第二、三项为一组。 解:原式=)5()102(bxbyayax 原式=)510()2(byaybxax =)5()5(2yxbyxa =)2(5)2(baybax =)2)(5(bayx =)5)(2(yxba 练习:分解因式1、bcacaba2 2、1yxxy (二)分组后能直接运用公式 例 3、分解因式:ayaxyx 22 2 分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式=)()(22ayaxyx =)())((yxayxyx =))((ayxyx 例4、分解因式:2222cbaba 解:原式=222)2(cbaba =22)(cba =))((cbacba 练习:分解因式3、yyxx3922 4、yzzyx2222 综合练习:(1)3223yxyyxx (2)baaxbxbxax22 (3)181 696222aayxyx (4)abbaba491 2622 (5)92234aaa (6)ybxbyaxa222244 (7)222yyzxzxyx (8)122222abbbaa (9))1)(1()2(mmyy (10))2())((abbcaca (11)abcbaccabcba2)()()(222(12)abccba3333 四、十字相乘法. (一)二次项系数为1 的二次三项式 直接利用公式——))...