1 平行四边形、矩形、菱形、正方形知识点总结 定义:两组对边分别平行的四边形是平行四边形 平行四边形的性质: (1):平行四边形对边相等 (即:AB=CD,AD=BC); (2):平行四边形对边平行 (即:AB//CD,AD//BC); (3):平行四边形对角相等 (即:∠A=∠C,∠B=∠D); (4):平行四边形对角线互相平分 (即:OA=OC,OB=OD); 平行四边形的判定方法: 1. 两组对边分别平行的四边形是平行四边形(定义判定法); 2. 一组对边平行且相等的四边形是平行四边形; 3. 两组对边分别相等的四边形是平行四边形; 4. 对角线互相平分的四边形是平行四边形; 5. 两组对角分别相等的四边形是平行四边形; 考点1 特殊的平行四边形的性质与判定 1.矩形的定义、性质与判定 (1)矩形的定义:有一个角是直角的平行四边形是矩形。 (2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。矩形具有________的一切性质。矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。矩形被对角线分成了____________个等腰三角形。 (3)矩形的判定 有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线_____的平行四边形是矩形。 温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60 度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。很多同学容易忽视这个问题。 2.菱形的定义、性质与判定 (1)菱形的定义:有一组邻边相等的平行四边形是菱形。 (2)菱形的性质 菱形的_______都相等;菱形的对角线互相_______,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。菱形即是轴对称图形,对称轴有____条。 (3)菱形的面积 菱形的面积=底×高,菱形的面积= 21 ab,其中a,b 分别为菱形两条对角线的长。菱形被对角线分成了4 个全等的直角三角形。 (4)菱形的判定:______________都相等的四边形是菱形;对角线____________的平行四边形是菱形;有一组邻边相等的平行四边形是菱形。 温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证 2 明,否则一般不利...