§4.4 感生电磁感应导体相对磁场静止,由于磁场的变化而引起导体内感生电动势的现象叫感生电磁感应。即: S、a 均不变,但 B 变而使得变。产生原因:分析: 回路置于变化的磁场里,最简单的方法就是回路平面和磁场垂直,回路中会产生感应电动势,如果回路闭合就有感应电流tRi1,如果回路不闭合,感生电动势仍是t ,不产生感应电流。 这是法拉等的发现。由于法拉第自身不可避免的局限,他没有再追究这一现象的深层本质。 接过接力棒再创佳绩的是麦克斯韦,他指出感应电动势其实跟导体的性质和种类无关,纯粹是由变化多端的磁场引起的。放置了闭合回路,回路中就有电流,这只是表面现象,不是事情的本质。麦克斯韦相信,即使不在导体回路,变化着的磁场也能在其周围空间激发一种称为涡旋电场的场,涡旋电场和静电场的共同点就是对电荷都有作用力,当然差异点也有不少。例如静电荷它可以单独存在,其电场线是闭合的无头尾无始终。如果恰好变化磁场中有闭合导体回路,变化磁场产生的涡旋电场电场线跟导体不垂直因而分解出与导体相切的分量,导体中的自由电荷受其作用力就会定向移动成为电流。这就是感应电动势的非静电力的来源。麦克斯韦最早分析了这种情况,他敏感地预见到这一现象,表明电场和磁场之间必然有某种当时尚未发现的新关系。让我们更具体地分析:一个物理场,既呈现某种空间分布又随时间依一定规律变化。我们说这个场是空间和时间的函数。磁场和电场一样,是矢量场。如果说它是匀强的,是指它非稳恒,空间分布状况不变但随时间改变其大小,场线会随时间变密或变疏。本题中变化磁场产生涡旋电场的问题,按麦克斯韦的理论,是一个十分复杂的问题。仅在非常特殊的场合,再附加上非常苛刻的条件,场的分布才是很确定的,中学阶段我们面对的模型几乎都是这样的:磁场被限制在一个圆柱状空间,有理想边界即磁场在边界上突变,在界内匀强,在圆柱外突变为零。磁感线跟圆柱轴线平行,在与磁场垂直的平面上磁场边界是有限大的圆。按麦克斯韦理论:如果磁场随时间均匀变化,那么产生的涡旋电场就不随时间变化;如果磁场随时间是振荡的,那么产生的涡旋电场就是同频率振荡的,如图4-4-1 所示。涡旋电场的电场线是一系列环抱磁感线的同心圆。沿这些同心圆的半径方向放置导体,导体上是不可能产生感应电动势的,在这个方向上导体内的带电粒子即受到涡旋电场力作用也不会沿导体定向移动。如果有环形导体恰好与电场线平行,导体上能产生感应电...