学习必备欢迎下载第三讲连续与一致连续一内容提要1. 函数在一点的连续性若函数)(xf在0x处的邻域内有定义,)(xf在点0x连续0lim0yx)()(lim00xfxfxx)lim()(lim00xfxfxxxx,0,0使得00:xxx,有)()(0xfxf.注 1 若)()(lim00xfxfxx,则称函数)(xf在0x 右连续;若)()(lim00xfxfxx,则称函数)(xf在0x 左连续.)(xf在点0x 连续)(lim0xfxx)()(lim00xfxfxx.注 2 设)(xf定义于区间 I ,Ix0,则)(xf在0x 连续的充要条件是Ixxxxxnnnnn,|}{}{0,有)()(lim0xfxfnn称之为连续的海涅归结原则.注 3 初等函数在有定义的地方处处连续.2.间断点的分类若函数)(xf在0x 处的某个空心邻域内有定义,)(xf在点0x 处无定义,或)(xf在点0x 有定义而不连续,则称点0x 为函数)(xf的间断点.第一类间断点( 1)可去间断点:)0(0xfAxf)0(0,)(xf在点0x 处无定义,或有定义但Axf)(0.(2)跳跃间断点:)0(0xf)0(0xf.第二类间断点)0(0xf,)0(0xf中至少有一个不存在.3.连续函数的局部性质(1)若函数)(xf在点0x 连续, 则0, M,使得00:xxx,有Mxf)(.(2)若函数)(xf在点0x 连续,且)(0xf,则0 ,使得00:xxx,有)(xf.学习必备欢迎下载(3)四则运算:若函数)(xf,)(xg均在点0x 连续,则)(xf)(xg,)(xf)(xg,)()(xgxf(0)(xg)在点0x 连续.(4)若函数)(xf在点0x 连续,)(xg在点0u 连续,且)(00xfu,则)(lim0xfgxx)(lim0xfgxx)(0xfg即函数)(xfg在点0x 连续.(会证明)4 闭区间上连续函数的整体性质(1)有界性定理:若)(xf在],[ba上连续,则)(xf在],[ba上有界.(2)最值定理: 若)(xf在],[ba上连续, 则)(xf在],[ba上能取得最大值M 和最小值 m .(3)介值定理:若)(xf在],[ba上连续,则],[),(ba,)(xf可取介于)(f与)(f之间的一切值.(4)零点定理:若)(xf在],[ba上连续,且0)()(bfaf,则在区间),(ba内至少存在一点,使得0)(f.注 1 闭区间上连续函数的整体性质在整个分析理论中具有重要性.注 2 介值定理和零点定理是讨论方程0)(xf的根的重要工具.5 一致连续性设函数)( xf在区间 I 上有定义,若对,0)(,0使得Ixx21,,只要21xx,就有)()(21xfxf,则称)(xf在 I 上一致连续.注1 )(xf在 区 间 I 上 一 致 连 续,0)(,0使 得Ix0, 只 要0xx,就有)()(0xfxf.注 2 一致连续定义中的是对整个区间 I 适用的,即只信赖于,而于21, xx的位置无关,不论21, xx在 I 的什么位置, 只要1x 与2x 接近到同一程度, 其函...