1 质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为 ,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为 ,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 2 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一 在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二 质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点 O 的动量矩是矢量 。 质点系对点 O 的动量矩是矢量 。 若 z 轴通过点 O ,则质点系对于 z 轴的动量矩为 。 若 C 为质点系的质心,对任一点 O 有 。 2.动量矩定理。 对于定点 O 和定轴 z 有 若 C 为质心, C z 轴通过质心,有 3 3.转动惯量。 若 z C 与 z 轴平行,有 4.刚体绕 z 轴转动的动量矩。 刚体绕 z 轴转动的动量矩为 若 z 轴为定轴或通过质心,有 5.刚体的平面运动微分方程。 常见问题 问题一 要注意,计算动量矩时,仅仅计算对质心动量矩时,用静止坐标系或用随质心平移的坐标系都可以,两者的计算结果是相同的。对一般的动点,两者计算结果不同,必须用静止坐标系计算,或用书中的公式计算。 问题二 要注意,动量矩定理仅仅对...